Quasi-polynomial Time Approximation Algorithm for Low-Degree ...

Report 2 Downloads 39 Views
Carnegie Mellon University

Research Showcase @ CMU Tepper School of Business

12-2003

Quasi-polynomial Time Approximation Algorithm for Low-Degree Minimum-Cost Steiner Trees Jochen Könemann Carnegie Mellon University

R. Ravi Carnegie Mellon University, [email protected]

Follow this and additional works at: http://repository.cmu.edu/tepper Part of the Economic Policy Commons, and the Industrial Organization Commons Published In P.K. Pandya and J. Radhakrishnan (Eds.): FSTTCS 2003, LNCS 2914, 289-301.

This Conference Proceeding is brought to you for free and open access by Research Showcase @ CMU. It has been accepted for inclusion in Tepper School of Business by an authorized administrator of Research Showcase @ CMU. For more information, please contact [email protected].

                       

                

        ! " ##  #   $ % & #  $ $$'  

%    #   #   ( )  * "  $+ $$ # '# 

 $   $      , #  '  #    $  #  -    +         #    % ./0 1   $    # "   $   # % + $ -   # '$   $  #  

  $      " " "  + #     $    %   

 "  "    $'# + $    $ #

  " .   # 2 !  % ./0 $ $$'  ' 

  $ 1   $ $     

% $+ $$ # 

) 3  *  #     "      % %  %  $ $$'   

" $+ $$ # 

  # #    4"      $  5 ' $                         

                   

           !

  "      #         $     #                                                  

                                     %       &  

     &                      &'   ( )  ( &  

       *                       

                              

$                      !     +&,         +',



     

$                 -

    %            





./

Æ    &  Æ        

& '

$            0   -/  ./    "  0 







  Æ  

 

  

  

(  ( 

1

   

*

   2

   ./$  ./      " ' $                   -  -/  0     " -/$       1$



          

3         4     5      " !     +&, ! "             0            0                "   6  

              

            !       #          

      70     

                      8     8 9   0           0                9         "     

-              :          #

      (  (  ( '   # " 



 

 



          

        "    %  0



      

 

 

 

    

       4   

  

           



1' )

   2

-       0             + ,                   "                     



     "             1' $       1  1'  9      

  0        

   !   !  "   

        

.       

#                           "           



 

 #    5        

           02         ;

          #   !     9            

                          2     $         0    5                        0 .               %

     )* "    

"          $   # 5 

      #  , $     + " #  %   $ ? # # 

6   #  >  )* " 

   % $/ # #   # @   

#  "

  #    # ¼   $/ #     $          $  #     %  #  #   $  #       #  1       %$  ¼  ¼   #     #  "     $ ? # # 

 &

 Æ

 # #    4  

&

  

 

                          4   $       

  "      4                 

&  '    

&*

.            &  Æ "   :                       &   "    4                       

     "         

                        

.  

"      #                   &        &     

$ 

  



  &)

  $                    "   % :            B   9                                     + ,

1#                         5      

  

 Æ 

  

 

>           4               5            &  :      " #    &      4             + ,               D      + ,       4                &     

  '      &

&;

7              (        3                  &            0 "        @   

 

 

  

  (

     $  



 

& 

'

    9  "   #      >     &       

& 

$  '

  

  

  

  

(     ( & &=

(     '  &

&C

  &;  &= >        )  ( '   )  

   * $     &C         "  

&  '$ 











       .        3        

   .    " *          - =     ¾



      $'   

    ¾