Quickest Change Detection in Multiple On-Off ... - Semantic Scholar

Report 5 Downloads 106 Views
c °Qing Zhao, Jia Ye. Presentation at ITA, Jan., 2009.

1

Quickest Change Detection in Multiple On-Off Processes Qing Zhao,

Jia Ye

Department of Electrical and Computer Engineering University of California, Davis, CA 95616

Supported by NSF and ARL-CTA.

c °Qing Zhao, Jia Ye. Presentation at ITA, Jan., 2009.

2

Quickest Change Detection Change Point T0

Declare at Td

Detection Delay

X1

X2

···

XT0−1

XT0 XT0 +1

Quickest Detection: min

E[(Td − T0)+] {z } |

subject to

Detection Delay I

XTd

···

i.i.d. ∼ f1(x)

i.i.d.∼ f0(x) I

···

Tradeoff: Detection delay vs. detection reliability.

Pr[Td < T0] ≤ ζ {z } |

Reliability Constraint

t

c °Qing Zhao, Jia Ye. Presentation at ITA, Jan., 2009.

3

Quickest Change Detection Change Point T0

Declare at Td

Detection Delay

X1

X2

···

XT0−1

Quickest Detection: min

XTd

···

i.i.d. ∼ f1(x)

i.i.d.∼ f0(x) I

···

XT0 XT0 +1

E[(Td − T0)+] {z } |

subject to

Detection Delay

Pr[Td < T0] ≤ ζ {z } |

Reliability Constraint

2 Bayesian:

Shiryaev’61, Borovkov’98, Tartakovsky&Veeravalli’05.

2 Minimax:

CUSUM (Page’54, Lorden’71).

t

c °Qing Zhao, Jia Ye. Presentation at ITA, Jan., 2009.

4

Application in Cognitive Radio Sensing starts

Opp. arises

Sensing ends

PSfrag replacements Opp. ends

Tx starts 

 

 



























































































































T0

0 I













































Primary Transmission

Td

t

Measurements: {X1, X2, . . . , XT0−1} are i.i.d with distribution f0(x); {XT0 , XT0 +1, . . . }

are i.i.d with distribution f1(x).

I

Stopping Time: At time t = Td, the user declares an opportunity.

I

Quickest Detection: min

E[(Td − T0)+] {z } |

Detection Delay

subject to

Pr[Td < T0] ≤ ζ {z } |

Interference Constraint





 













 



 



 

















































































































































































 



 





































































































t 







 































































































































































































































































































































t









































































































































































































































































































t

































 







to switch: loss of data vs. avoiding bad realizations.



 













 







































2 Whether



















 



































to declare: delay vs. reliability.

t 

2 Whether







 



 







 





























 







 







 





































 



















































 

































































switch, or declare? 2 Continue,



 





































































Tradeoffs: I

Quickest Detection of Idle Periods in Multiple On-Off Processes: I

5 c °Qing Zhao, Jia Ye. Presentation at ITA, Jan., 2009.

Quickest Detection in Multiple On-Off Processes

PSfrag replacements

c °Qing Zhao, Jia Ye. Presentation at ITA, Jan., 2009.

Climbing The Corporate Ladder Keep climbing?

Or look for a greener pasture?

6

c °Qing Zhao, Jia Ye. Presentation at ITA, Jan., 2009.

7

Outline

I

Quickest change detection in a single stochastic process 2

I

Shiryaev’s algorithm

Quickest detection in multiple on-off processes 2

A decision-theoretic formulation

2

The optimal detection rule: a threshold policy

I

Simulation examples

I

Conclusion and work in progress

c °Qing Zhao, Jia Ye. Presentation at ITA, Jan., 2009.

8

Quickest Change Detection: Classic Bayesian Formulation Change Point T0

Declare at Td

Detection Delay

X1

X2

···

XT0−1

XT0 XT0 +1

i.i.d.∼ f0(x)

···

i.i.d. ∼ f1(x)

Bayesian Formulation: I

Priori distribution of change point T0: geometric Pr[T0 = 0] = λ0 Pr[T0 = k] = (1 − λ0)p(1 − p)k−1 , ∀k > 0,

XTd

···

t

c °Qing Zhao, Jia Ye. Presentation at ITA, Jan., 2009.

9

Shiryaev’s Algorithm Change Point T0

Declare at Td

Detection Delay

X1

X2

···

XT0−1

XTd

A sufficient statistic: a posterior probability that change has occurred λt , Pr [T0 ≤ t|X1 , X2, . . . , Xt].

I

···

i.i.d. ∼ f1(x)

i.i.d.∼ f0(x) I

···

XT0 XT0 +1

Shiryaev’s detection rule: Td = inf{t : λt ≥ ηd}

I

Detection threshold ηd: determined by the reliability constraint ζ .

I

Setting ηd = 1 − ζ is asymptotically optimal as ζ → 0.

t

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

"

#

!

"

#

!

"

#

"

#

"

"

#

#

"

#

"

#

"

"

#

#

"

#

"

#

"

"

#

#

"

#

"

#

"

"

#

#

"

# "

#

# "

"

#

"

# "

"

#

#

# "

"

#

"

#

"

"

#

#

"

#

"

#

"

"

#

#

"

"

#

#

"

#

"

"

#

#

"

#

"

#

"

#

"

#

"

#

"

#

"

#

"

#

"

mI =

!

t #

PSfrag replacements

1 pI 1 pB

mB =

10 c °Qing Zhao, Jia Ye. Presentation at ITA, Jan., 2009.

Quickest Detection In Multiple On-Off Processes



 

 















 

















 



 































































 













 







































t 

I Fraction of idle time: λ0 = mIm+m . B



 





























 







 







 





































 



















































 

































































I





































Idle period: geometrically distributed with mean mI = p1I .









































































I







t 

Busy period: geometrically distributed with mean mB = p1B .



 

































































































































































































































I



 













 

















































































A large number of independent homogeneous on-off processes.



 





























 







 







 









































































































































































































































I

t

*

*

+

*

+

+

*

*

+

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

*

+

+

*

*

+

+

*

*

+

+

*

*

+

+

*

*

+

+

*

(

)

+

(

(

)

)

(

(

)

)

(

(

)

)

(

(

)

)

(

(

)

)

(

(

)

*

*

+

*

+

+

*

*

+

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

+

*

*

+

+

*

*

+

+

*

*

+

+

*

*

+

+

*

*

+

+

*

(

)

+

(

(

)

)

(

(

)

)

(

(

)

)

(

(

)

)

(

(

)

)

(

(

)

)

(

(

)

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

(

)

)

(

&

'

&

'

&

'

&

'

&

'

&

'

&

,

,

,

-

,

-

,

-

,

-

,

-

,

-

,

-

,

-

,

-

,

-

,

-

,

-

,

-

,

-

,

-

,

-

,

-

,

-

,

-

,

,

-

-

,

,

-

-

,

-

,

-

,

,

-

-

,

,

-

-

,

-

,

,

,

,

-

-

,

,

-

,

-

,

,

-

-

,

,

-

-

,

-

.

/

,

.

/

-

.

/

.

/

.

/

.

/

.

/

.

/

.

/

.

/

.

/

.

/

.

/

.

/

,

-

,

-

,

-

,

-

,

-

,

-

,

-

,

-

,

-

,

-

,

-

,

-

,

-

,

-

,

-

t .

/

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

0

0

0

0

0

0

0

0

0

0

0

0

0

t 0

TD (L) Declare

'

&

'

&

'

&

'

&

'

&

'

&

'

&

'

&

'

&

'

&

'

&

'

&

'

&

'

&

'

&

'

&

'

&

'

&

'

&

'

&

'

&

'

&

'

&

'

&

'

&

'

&

'

&

'

&

'

&

'

&

'

&

'

&

'

$

%

&

$

%

'

$

%

$

%

$

$

%

%

$

%

$

%

$

$

%

%

$

%

$

%

$

$

%

%

$

%

$

%

$

$

%

%

$

%

$

%

$

$

%

%

$

%

$

%

$

$

%

%

$

%

$

%

$

$

%

%

$

%

$

%

$

$

%

%

$

%

$

%

$

$

%

%

$

%

$

%

$

$

%

%

$

%

$

%

$

$

%

%

$

%

$

%

$

$

%

%

$

%

$

%

$

$

%

%

$

% $

%

% $

$

%

$

% $

$

%

%

% $

$

%

$

%

$

$

%

%

$

$

%

%

$

%

$

$

%

%

$

%

.

/

.

/

.

/

.

/

.

/

.

/

.

.

/

/

.

/

Detection Time

PSfrag replacementst )

Reliability Constraint

} {z l=1

| } {z l=1

|

Switch TS (L − 1)

Ts(l) + Td(L)) = busy] ≤ ζ Pr[SL( s.t. Ts(l) + Td(L)] min E[

)

(

(

)

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

(

)

)

(

)

TS (2)

L−1 X

L−1 X

Switch

Channel 1 Channel 2 Channel L − 1 t Channel L Switch TS (1)

11 c °Qing Zhao, Jia Ye. Presentation at ITA, Jan., 2009.

Quickest Detection In Multiple On-Off Processes

c °Qing Zhao, Jia Ye. Presentation at ITA, Jan., 2009.

12

A POMDP Formulation I

State Transition: S/λ0

S/1 − λ0

PSfrag replacements S/λ0

C/pB

C/1 − pB

0

1

(Busy)

(Idle) S/1 − λ0

C/1 − pI

C/pI D/1

D/1



(Absorbing)

1

I

Cost: 2

Switch or Continue: 1

2

Declare during a busy period: γ

c °Qing Zhao, Jia Ye. Presentation at ITA, Jan., 2009.

13

A POMDP Formulation

I

A Sufficient Statistic: the information state (belief) λt = Pr[Zt = idle|X1 , X2, . . . , Xt] mI λ0 = mI + m B

I

Update of the Information State λt =

I T (λ|x):

(

T (λ0|x)

a(t − 1) = S, Xt = x

T (λt−1 |x) a(t − 1) = C, Xt = x

.

updated information state based on the new measurement x. ¯ B )f1(x) (λ¯ pI + λp T (λ|x) = ¯ B )f1(x) + (λpI + λ¯ ¯ pB )f0(x) . (λ¯ pI + λp ∆

c °Qing Zhao, Jia Ye. Presentation at ITA, Jan., 2009.

14

A POMDP Formulation

I

Channel switching and change detection policy π :

λt ∈ [0, 1] I

=⇒

a(t) ∈ {S, C, D}, for each time t.

Quickest change detection:

π ∗ = arg min Eπ [ π

∞ X

mI Rπ(λt) | λ0 = ], mB + mI | {z } t=0 Cost

c °Qing Zhao, Jia Ye. Presentation at ITA, Jan., 2009.

15

Quickest Change Detection: Value Functions I V (λt):

the minimum expected total cost when the current info. state is λt. V (λt) = min{ VC (λt) , | {z }

VS (λt) , | {z }

VD (λt) }. | {z }

Continue Switch Declare

I VC (λt):

the minimum expected total cost if continue. VC (λt) = 1 +

I VS (λt):

x Pr[

P (x; λ ) V (T (λt|x))dx | {z t} observe x under λt ]

the minimum expected total cost if switch. VS (λt) = 1 +

I VD (λt):

Z

Z

x Pr[

P (x; λ ) V (T (λ0|x))dx = VC (λ0) | {z 0} observe x under λ0 ]

the minimum expected total cost if declare. VD (λt) = (1 − λt)γ.

c °Qing Zhao, Jia Ye. Presentation at ITA, Jan., 2009.

16

Quickest Change Detection: A Threshold Policiy I VD (λt)

is linear.

is concave and monotonically decreasing if m1 + m1 ≤ 1. B I I I VS (λt) = VC (λ0), where λ0 = m m+m . I B I VC (λt)

γ

PSfrag replacements

VD (λt)

VS (λt)

VC (λt)

0

λ0

ηd

1

λt

c °Qing Zhao, Jia Ye. Presentation at ITA, Jan., 2009.

17

Quickest Change Detection: A Threshold Policiy V (λt) = min{ VS (λt) , | {z }

VC (λt) , | {z }

VD (λt) }. | {z }

Switch Continue Declare

PSfrag replacements

γ VD (λt) VS (λt)

VC (λt)

Switch 0

ηs = λ 0

Continue

Declare ηd

1

λt

c °Qing Zhao, Jia Ye. Presentation at ITA, Jan., 2009.

Simulation Examples

I f0(x), f1(x):

Gaussian with zero mean and different variances.

I SN R = 10dB .

I ηd = 1 − ζ .

18

c °Qing Zhao, Jia Ye. Presentation at ITA, Jan., 2009.

19

Simulation Example: Geometric Distribution Increase both mB and mI while keeping λ0 fixed 60

Single−Channel Strategy Multi−Channel Strategy

50 Average Detection Time

I

40 30 20 10 0 0

50

100 Average Busy Time

150

200

c °Qing Zhao, Jia Ye. Presentation at ITA, Jan., 2009.

20

Simulation Example: Arbitrary Distributions Busy period: truncated Pareto distribution with increasing tail index 500 450

Single−Channel Strategy Multi−Channel Strategy

400 Average Detection Time

I

350 300 250 200 150 100 50 0 400

500

600

700 800 900 Average Busy Time mB

1000

1100

c °Qing Zhao, Jia Ye. Presentation at ITA, Jan., 2009.

21

Conclusion and Work in Progress PSfrag replacements

Quickest Detection in Multiple On-Off Processes: γ

VD (λt) VS (λt)

Switch 0

Declare

Continue

ηs = λ 0

ηd

VC (λt)

1

λt

Work in Progress: 2 Asymptotic 2 Minimax

optimality for arbitrary distributions and non-i.i.d. data.

formulation.