0 such that P[lIn(C) >.lvf] ~ exp(-(1+e).lvf2/2a2(C»
whenever n
~
1-
1,.lvf2 ~ Ka2(C), and M/n 2a2(C)
;:i
I
'-0.
Proof of Theorem 3.1 (A).
It is easily
that
(i)..(iii). It follows that _1
1'nl~(nb~n) ,2
=
0
(1).
From the Kolmogorov 0-1 law we then conclude that the lim sup in (3.4) is some constant a.s, By Lemma 7.2, to prove (A) it suffices to show that for each 0 >0,
P-[llIn(c)1 > (1+8o)R obnl7(C) for some C
(7.17)
€
Cwith a2(C) ~ 1'11.]
where R 0 J. R o aso ~ 0 and R(J is Ro (i), (ii), or (iii) we are 0 (1+4o)R obnt//2 for
some C
FU))
E
i=O
Ne",
:=
l:.Pj+Pn *'
i=O
We now consider separately the cases (i)-(iii) of (3.4). Proof of (A) (I). Here we take an == 1/4. Un. == u for some 0 < u < 0 to be specified later, and R o := (2«P + o)(c 1 + 0) +
J. c2
+
Ca
+ 20»2. 1
n
-+
Now a2(C) ;;;; t i for C E F(j), and maxiW", wJ/2/n 2ti 00 since n- 1wn = 0 (-Yn). so by (6.5). (6.2), and (7.18).
-+
0
as
2IF(j)le~(-{1+40)RSwn/2)
;;;; exp (-[(1+4o)RS/2 - (p+o)(c 1+0)]Wn) ;;;; e~(-(1+o)(c2+ca+2o)wn)' SinceNn ;;;; (log (1-u 2/4}-1)-1 £-y:;;1, it follows that N".
(7.21)
l: Pi s Nne~(-(1+o)(C2+C3+2o)wn)
1==0
;;;;
e~{-(l+o)LL7l.).
'rneerem 2.1, (7. g(t) w n / 4u 2n
"'nT~"'T",nT
from
-y := -Yn' of Th~:>nl"prn 2.1, aCt) u- 2g (t) (see Remark 2.2), 0 (-Yn). so r > s (2.5) 1; if we u ;;;; 6RoK- 1/2 b := "'... (J.....",
=
for =0
771.
t
1
(')''11)
~
for all t
=o «nWn Y2)
and
Yn, so _J.
Kt 2L{na{t»
~Kt
_.1
_.1
2L{nt) +Kt 2Lg(t)
for all t ~ On, and (2.3) follows. u 2 < 0 2/512,
~
.1
6R 6(nwn)2
Theorem 2.1 now tells us that, if we take
1/4
JPn •
s
36
J
t-1exp(-02R~n/512u2)dt
"''''/''2
.1
+ 6Bexp(-oR 6{nYn wn)2/256)
~
140exp (-{l+o)(ca+o)Wn)
~
140exp{-{1+6)LLn).
With (7.20) and (7.21) this proves (7.17), and (A) (i) follows.
Proof of (A) (li). Here we take Un
o
for
.1
with
R 6 := max(R 61,Roz)
to bevspeeified later, and
1
R 62 := T2(Pe(o)T-1), where B(6) := {(P+ 6)(Cl + 6) + Ca+ 0)-1. We take (7.22)
CXn
J. 0
= o(an) and U{y;l cx·nJ = o(w,J.
7'11
.-
. Since
=
Lg(an} ~Lg(7n) ~ L(cx.;;:ta(cxn » + L(y;ICXn) Lg(an) + o(wn ), we have W n "" wn and n- 1wn 0 (cxn ) . It is then VPl"ift,,'rl stants C1. Cz. Ca are unchanced if Yn is replaced by an in (3.2).
=
above proof of
(7.23)
(A) (i) (C)! >
) for some C
E C with
= sumces to barilla
>
and
R o1 := (2«P+O)(Cl+0)+Cz+ca+26»2
for some C
E
a2(C) ~
CXn
1
with
- 32-
~ 2IF(j)!exp( -(1+40)2R12wnAi';hl(A.,J).
Set
Tn := n7nw~1
and
t := fJa{o)'T' -
Tn
1.
-l>
T,
(1+40)R o2 T n ~ (1+30)t. From (1.11) we know that thl(t)
we
have
=
=(8{0)T)-1.
It follow
that
A.,,,h 1(A.,J ~ >..rn2{1+30 )t h l(t ) = (1 +30)Tn/( 1+40)2R l2 B(O)T ~ (1+Zo)/(1+40)2Rl2 B(o)
so by (7.24) and (7.18), N",
2J ZIF(j)Jexp(- (1+ZO)8{0)-1U/n)
1=0
~
exp(-(1+6)LLn)
»
since Llln = O{LL(7,;l exn = O. In combination with (7.20) and (7.25) this proves (7.17), and (A) (ii) is proved.
Proof of (A) (iii). This time we later, and take Cln
Un
=n- 1wn
=(n7n/wn)stfor
some (large) p.. > 0 to be specified
and
R o := (p + 6)(c 1 + 6) + C3 + O. Set wn := ) w'"n1/2 -- 0 (Yn, for some C
E C
(ii) it SUIIlCI~S to bound
of
= since Nn
=
(6.2). Now LU;;1 = Q (tlJn) by (3.5), so (7.25), (7.29) (7.18) by
h I(An) '" O(LU;;2+LL
~
and
e::cp(-(l+o)LLn).
Once again Theorem 2.1 will provide the needed bound on P n ". As before we take (t):= u1t, b := oR 6Yn, 1':= 1'11" a:= an, g(t}:= t 1/2, and Crt) as (7.19), ),g(t)
so
=
(nt )-l/2L(nt) ~ (nl'nJ
z(t)=U;; 2t
_l.
_l.
".»
=Ynw;;lL(wn/n'YrJL (ni'n'>
2 L(nl'n)
~ Ynw;;I(4/-L}-lL(U;;4}Lwn ~ (4/-L}-l ynL(wn/nu,Jt).
For the second term,
(ii). LL (27;;,lcx n )
now
apply
=LL (Z'Y;;,ln -lwn) =
esraonsned as in the and use the fact that 1 to obtain, if /-L is large enough,
l.
l.
+ 36e::cp(-Z-8oR 6Yn(n'Yn )2L (oR 6Yn/(n '111, )~u1»
~
140exp
(A) by
(3.5),
- 35The result now follows as the proof of (A) (ii). I We introduce now some notation and preliminary calculations for use in the proofs of the next three propositions. Let R > 0 and 6, A,J,L E (0,1) be constants to be specified later. C be a full VC class. For each t E (0,1/4] let D t c C with eA!l(t}l-A ~ cr(C)
=
lD t
~ eA!l(t}l-A
t, P(C} ~ 1/2, and P(Cfi(UJ)€Dt,D"oCD»
+
1, and
s AP(C)
for all C EDt,
where ex ~ 1/8 is the constant in the definition of "full". Let (i'71.)' (an), and (on) be nonnegative sequences with 7'11. ~ an ~ 1/4 and n V 2bnQ(7n) .....
(7.31)
00,
Let (n(k ),k ;;;: 0) be a strictly increasing sequence of integers with nCO) set
= 0,
and
m(k} :=n(k} - n(k -1}
n~)
Y.I:{C) :=
lc(Xi )
i=n{.I:-l)+l 1
S.I:(C)
:=
Y.I:(C) - m(k)P(C)
1
= n(kfivn(.I:)(C)
- n(k
-lf2 Vn (.I: _ l )( C )
t.l:j := an (.I: )p/, N.I:
= minU ;;;: 0
: tk.j+l
N'1e := minU ;;;: 0 : t.l: j ~
< 7n(k)L
7J,f(16j,
1.1: := Hi,i): N'.I: ~ i ~ Nk> 1 r(k,i)
si
~
IDtkilL
:=IIltkil,
and observe that D tki
= ~Ckji : 1 s i
;;;; r(k,i)~
for some sets C.l:ji. Note the k indexes the number of sample points, j indexes the sizes of the sets, and i indexes the collection of sets correspondto each and i. The Ckji are nearly di:.;joint for fixed k and i : we wish to replace them with fully disjoint sets Dk ji • Define G'.l:ji :=
C.l:ji
D'kji :=
C.l:ji \G'leji'
G
fi (Um"oiCkjm),
:= D 'kji fi (Ul:>j Um:lir(.I:.l)Cktm),
while P(UiC"kfd ~
2tkLr(k,l)
~ EL>f(2e>..a(tkL)1-.A.t,Q
+ 2tkd
~ EL>f (2e>..a(tkj)1- Att,p!'(L-f)
+ 2t kjp!'(L-j»
~ 2(e.A. + 1)p!'(1- f.LA)-l a(tkj )l-Atk~'
If,
as
we
henceforth
assume, f.L is chosen small enough so 2(e.A.+1)f.L.A.(l-~tl;;i>..e>..(l->")/2, it follows that P(UiC"kji);;i>"P(UiD'kjd/2. Hence for fixed k,j, for at least half the values of i we have P(C"kfi) ;;i AP(D'kfi)' By reducing E:.A. and ID t,l;jl by half if necessary, we may assume this is valid for all i; it then follows from C P(Dkji)·~ (1-
(1- 2>,,)P(Ckjd, so
(7.32)CT~(Dkji).~(1 ...
2>..P(Ckji).
Observe also that (7.33)
Ckji
=Dkji U Gkji
as a disjoint union, and
Gkji () (UL~j Um~r{k.j,.nkLm.)
= ¢.
".'
We now define events 1
A kji := [Sk(Ckji) ~ (l-26)Rn (k)2b n{k)q (a2(C kji»] A'kji :=
1
Ekji := [V n(k-l)(Ckji) ~ -oR (n(k )/n(k -1»2b n{k)q(a2(Ckji »]
r,
:= u{j,i)€h"Ei.ji
B k ..-
B' k
U{j.i)e:Ik A 'kji'
Note that A and A "kfi imply Akj i, that Akji and E kji together imply that Vn{k)(Ckji) ~ (1-3o)Rb n{k)q(cr(Ckji». Thus (7.34)
lim SUPnSUPlVn(C}/bn{k)q(cr(C» : C
C, 7n
E
a.s.
i.o. } Sk are mdependent,
EP
so we
)
= 1,
(7.35)
P(Fk i.o.) .LVl.'LU"
)=00, EP
= O.
if
< 00,
;;i cr(C} ~
Cln
$
Ukj := [Yk (Hkj) ~ Zkj] Zkj
by
=6Rn(k)l/2on{k)Q(tkj)/2.
16Atkj (zJcj - m ( k )P (H kj »
(7.37) k and
""
B 'k by
E
T I (",, ) := minU : "" EA'kji for some
is.
T e(",,):= minfi: "" EA'kTt{t..l)iS,
and let T I = T e = CX) off B'k. If 5k is large on Dkji, it is probably also large on because D kji is most of Ckji by (7.32). To make this precise, we will show that
Ckji ,
P(BkIB'k,Ukj,(TitTe) = (j,i»
(7.38)
~ P(A"kjiIB
T z)
Once (7.38) is establishe(f, we have 2P(BJ.., then continue the present calculation. Proposition 7.9. Let C be a full VC class and q
E
Q, and suppose
1
q(t)/t 2
(7.43)
,l.,
q(t}/(tLt-l}l/2 t, Lg(t}/Lr 1 t.
Let (7n), (an), (b n) be nonnegative sequences satisfying and 1
(7.44)
bnq(7n}/n27n
-+
O.
Suppose the following limits exist and are finite: (7.45)
c 1 := lilTl.n 7nLg(7n}/b.fq2(7n) c2
:
=lilTl.n YnLL (y;;: 1ex'll. }/b.fq 2( Yn)
Ca:= lilTl.n YnLLn/b.fq2(7n}. Then (7.46)
Proof.
o < 0 < 1 and
V:=
R=
assume R > O.
, we ccntinue our
, >..=
-.;aJLI,.; U.LaLJLUU
takmg
].
Set u(k):= e>..g(7n{k»1-0/8,N(k) :=Nk -N'k
Since tg(t) and Lg(t)/Lr 1 increase, for j
+ I.
we have
;E N'k
r(k,j);E eA!J(tkj)l->";E eA!J()'~(f{16)1-0/16 G u(k).
Hence by (7.42) and (7.47),
IfW'k
> o then
so while similarly
;E (-1 + (o/16log J.l-l) log (7;;(k)(Xn{k») v L
Since 7;;(k)CXn{k) ~
00
0, it follows that c2(1-o/4)b,r{k)q2(7n{k»/7n{k)
i::51Illi1arJ.y since logpk-2 •
For i ;EN'k Hoetfdulg (1963)
"rlttf>/2.
J
rtence by (7.50),
we see
Using this and Theorem 1 of
- 408P(Bk ) ~ N(k)u(k}Pk A 1.
(7.52) (7.49) we obtain
(7.53)
N(k luCk )Pk = £).N(k )g(7n(k)P-6/B exp( -(1-0/4)R2b~(k)q2(1n(k»/27n(k» ~ £).exp( -(1-o/4)csb~(A:)q2(7n(k»/7n(k» ~
e).exp(-(1-o/8)LLn(k})
~
£).k-(1-6/16).
=
With (7.52) this shows EP(B k ) 00. To establish (7.36) it remains 7n(k) ~ t ~ £k := 7~(f(16,
to
bound P(Fd.
By
(7.43),
for
and ~:2: q2(7n(k» t ,n(k)
Lei 1 :2: q2(7n(k» L';;(k) - 2,n(k) .
Also N(k) ~ N k + 1 ~ (log j.l-1)-11 0 !1. (' ;;(k )(Xn(k » + L
Combining these facts with (6.5), (6.4), (7.44), and (7.43) we obtain P(Fk.) . .~.E(j.i)~h.2er[J(--o2VIi2~~(k)q2(a2{C~ji»/tk;2·(Ck#}}
~ Ef:N'1; 4g (t kj )exp (-4R2b~(k)q2(tkj)/tkj) ~ E:'~N'I;4exp (- (B 2+2c 2+2c s)b~(k )q2(t~j )/tkj ) ~ 4N{k)exp(-(R 2/2+C2+ Cs)b;(k)q2(,n{k»/,n(k»
~
4exp(-(5/4)LLn(k})
and (7.36), and (7.34), follow. Since 0 may be arbitrarily small, this TI1"'I"1V"""Z the proposition. •
Remark 7.10.
C4:=
lim
- 41 one, for us to obtain some lower bound on ccrresponding lim
I Proposition 7.11. Let C be a full VC class. Let 7T'" w n , Cit and Ca be as in Theorem 3.1 and 0:= (Cl+Ca)-l, and suppose 771. "" Tn- 1W n for some T> O. Suppose the lim sups in (3.2) are actually limits. .1
lim sUPnsupHvn(C)I/w~(T(C): C E C, a2(C)
(7.54)
= 771.5
1
;;;; T
2 ({JeT - 1)
a.s,
Proof. q (t)
A :::
-w 1/'2", _ .... 11.
take
0 and set Y« * := 1n v aJ+6. We wish to apply Proposition 7.9. Consider the sequences in (7.45): since Lg(t)/Lt- 1 increases, Lg l(1n *) ~ (l+o)Lg l(an) so li'mn.1~Lg(1~)/qr(1:)=
Cl
lim infn1:LL«1~)-lan)/qf(1:) ~ (1+0)-lc2
Since 0 is arbitrary, Proposition and Remark 7.10 prove (u). For (iii), by increasing 1n we may assume 1n an' The proof is then just like that of Theorem 3.1 (C), since C2 = 0 and C 1 = 1 whenever Cs O. I
=
=
Proof of Theorem 4.1. localasym.ptotic modulus at ¢for (v n ) . To show 1/10 is an asymptotic modulus of let 1n,an .!. 0 with nan t, 1n ~ an, n-1Ln 0 (1n), LLn O(La~l). It suffices in (4.5) to consider C,D ~P(CAD Let D:= : C,D E C, 1n/2;:;i cf4(C\D) ~ an! : C.IJ EC, 1n ;:;i ) ;:;i We g(t) := t- l ) ,we
=
=
EC
» :C
E
E.1n ~
: C ED
- 46-
I
so the result follows from Theorem 4.2.
Proof of Theorem 4.4. We use 2.1, with C{t) := Ct. ((t):= t , q{t):= '¢'1{t 1/2 ) , 1:= 711.' and 0::= we use p:= 0.) r = 711. > S (2.1), n- 1Lg{7n) e (7n). If b is large enough then (2.2) is clear, (2.3) follows easily from the observation that
=
L{na{t)) ~ L{nt) + Lg{t),
(7.65)
and (2.4) and (2.5) are vacuous. Hence (2.6) holds. If b is large then exp{-bZqz(t )/512t) ~ b- 1{Lt - 1)Z, so the second term on the right side of (2.6) 1
can be made small. Since q{1n)n 2 ~ (n1n)VZ small for large n,and the theorem fellows.
-'> 00
as n
-'> 00,
the third term is
I
Proof()fTheorems 5.1 arid 5.2. Observe that for M > 0, Pn{C) . P[supfl P{C) -
(7.66)
11 : C
E
C,p{C) ~ 111. ~ > M]
1
~ P[lvn{C)1 > Mn 2a2{C) for some C
E
Cwith a2{C) ~1n/2].
Thus to prove the desired results we use Theorem 2.1 with C{t):= Ct> 1
and b := Mn 2". If (2.2)-(2.5) hold then
({t) := t , 1:= 111./2, 0::= 1/4, (2.6) bounds the of
68exp ( -u« 1n/256)
(7.67)
= 0(exp(-M2n1n/1024» + 0(exp{-.Mn1n/256».
In (2.1) the values
(7.68)
if
s=
r=
M
~
2
To prove (5.2), we take M fixed but arbitrarily small in (7.66). Then (5.1), that n1n -'> 00 and (2.3). (2.4) and (2.5) are (7.65), and the vacuous by (7.68), so (5.2) (7.67). If (5.3) .u."'.1."'-'", same
O({Ln)-Z), and a.s. C011verlH:::I1c:e ~ n- 1
~ 2,
(7.69)
(C) for some C E C with P n S1J.'lI)l-~":-
-
1/ : C
E
C,P{C)
~ R1~j
Pn{C) F 0, ) F
>
are vacuous.
(7.66), vacuous. If 9
is
t, then all e > 0 by
bounded,
supfPn(C)/P(C) : C € C, P(C)
;S e/~S
(5.7), while for R > 0, P[sup~Pn.(C)/P{C) : C € C,P(C) ~ P[supfPn (C)
:C
€
< e/~S > R]
CP(C) < e/~S > 0]
~ naky~) ~ nAe/~ ~ AeLA
-l'
0 as e
-l'
0,
and the last statement in Theorem 5.2 follows. It remains to prove (5.5) when C is full and (5A) holds. By (5.4) we have Un) for all n some so if wedefinet'n to be the solu7=
then -''11. for some 0
;l;;
(22d)d-1 U-2(d-l)g(t),
I
=
6
- 49-
(8.1) Ct \C(I-'Ul3/4)t
=iCatl : r
~
b < r\
v E sa-IS u
iCCu : -r- < b ~
-r, v E sa-IS
Let
two vectors
=
(8.2)
~
MO-(d-l)
for some o,i! depending only on d. We now prove (3.3). specify 0 := u Z/ 16r . Let C E C t \C(I-u 2/4)t ' It is clear that there is awE Sd-l for which C C Crw and
(8.3) P(C ACrw }
~ P(Crw ) - P(Cr ' w )
=f (t) -
f
«1-u z/ 4)t ) ~ u Zt / 2.
Since V is maximal, there is a v E V making an angle ex can show that
~
0 with w. Suppose we
(8.4) With (8.3) and (8.2) I
M un-(d-l) s; 16d-IMu-Z(d-l)rd-1 N Z(ut 2 ,Ct\C (1-u2/4)t' P) s; .
Since tfJ-l(l-f(t» "" (2Lf(t)-l)VZ as t
-)0
0, there exists K= K(d) such that
K-1g (t) ~ r
(8.5)
d- 1
and (3.3) follows. The equality in (8.4) is clear. Since
H
(j
~
Kg (t)
etc; \Crw )
depends only on r and the
T closed half .plane bounded by lz and disjoint from Crw , and W the wedge Crv with vertex at TV. Then
(8.6) (3.3) follows
=tfJ(r) -
tfJ(r cos ex)
~
r(1-cosex)exp{-rZ(cos2ex)/2) ~ r 02 exp (r 2 0 z/2) exp (-r z/2)/2 ~
~ u Z( 1- tfJ(r» / 8 ~ u Zt / 4. TV
we obtam
(8.8)
peW)
=
Combining (8.6). (8.7). and (8.8) proves (8.4). and (3.3) follows. To show C is full we use similar ideas. but change 8 to (16dLr )V2/r . Fix A E (0.1) and take b = b(d) large enough so
v.w since the angle between If xECrv nCrw for v and w is at least 8. we have IIxl1 2 ~ r 2 + r 2tan2( 8/ 2). so IIx!l ~ r(1+8 2/16). It follows using (8.9) and (8.10) that
etc;
n
(UW€v.w,",vCrw)
~
POx:
~
b (2r )d-2 exp (-r 282/16)exp (-r 2/2)
Ilxll ~ r(l+02/16)D
Since by (8.2) and (8.5).
IVI ~ 0 8-{d-i) ~ or tt - 1/(H3dLr ){tt-i)/2 .~ Eg(t )1-],. for some constant
thatC is f u l l . ;
E
P 1. u E (0.1) (0,1/4] and set r := and r := . Let Zl+ denote nonnegative For each j ,k E Zl~ ~ r 131;/" for alIi ~ d and E}i, ~ rr, define ,bik E 1Jd by ,
numoer of rectangles
b 'tjk
...--
J --.............. 13 ·
1.
+13
] )
(t
}'i.
:=
.- max)!,
r
for
i ~ d.
Now 2r- 1(Vi -Wi) ~ a?7t: ~ Vi and [aik.b ik] and Vi -
so [v.w]
C
Wi
~ bi7c ~
P([aik .b i k ] ) ~ (1+5r- 1)dp ([v ,w])
(3.3) now follows.
I
Wi
+ 3r- 1(Wi -Vi).
P([v ,w]) + u 2t.
KS.: ineeualtties for empizieal processes and a law of the iterated l,..,r'::I7'iH'rrl Ann. Probability. 12 Alexander, KS.: Rates of growth weighted Proceedings of the Berkeley Conference in honor of Jerzy Neyman and Jack Kiefer, Vol. 2 (L. LeCam and R. Olshen, eds.) Belmont, CA: Wadsworth 1985. Alexander, KS.: Sample moduli for set-indexed Gaussian processes. Ann. Probability 14, 598-611 (1986).
Breiman,L., Friedman, J.E., and Stone, C.J.: Regression Trees. Belmont, CA: Wadsworth 1984.
Classification and
Csaki, E.: The law of the iterated logarithrn for normalized empirical distribution function. Z. Wahrsch. verui. Cebieie 38, 147-167 (1977). Diaconis, P. and Freedman, D.: Asymptotics of graphical projection pursuit. Ann. Statistics 12, 793-815 (1984).
Probability 1, 66-103 (1973). Dudley, RM.: Central limit theorems for empirical measures. Ann. Probability 6,899....929 (1978).
P.: Empirical Processes. IMS Lecture Notes - Monogra:ph Series 3 (1983).
Hoertdmg, W.: J.
sums
- 53Jogdeo, ~an:lue>Ls, S.M.: MOJ:lotlone convergence of bin,orrual prclbalolli1:1es and a Ann. Math. 39, 1 -1195 (1968).
J.: Pn. ,J. O. Proc. 6th Berkeley Sym/pos. Math. Statist. Probab. Vol. 1, 227-244. Berkeley: Univ. of (1972). LeCam, A remark on measures. A Festschrift for Erich L. Lehmann Honor of 65th Birthday Bickel, K. Doksum, and J. Hodges, editors). Belmont, CA: Wadsworth (1983). Mason, D.M., Shorack, G.R., and Wellner, J.A.: Strong limit theorems for oscillation moduli of the uniform empirical process. Z. Wahrsch. ueru: Gebiete 65, 83-97 (1983). Orey, S. and Pruitt, W.E.: Sample functions of the N-parameter Wiener process. Ann. Probability 1, 138-163 (1973). Pollard, D.: A central limit theorem for empirical processes. J. Austral. Math. Soc. (Ser. A) 33, 235-248 (1982). Pollard, D.: Convergence of Stochastic Processes, New York: Springer Verlag (1984). Shorack, G.R. and Wellner, J.A.: Limit theorems and inequalities for the uniform empirical process indexed by intervals. Ann. Probability 10, 639-652 (1982). Stout, W.: Almost Sure Convergence. New York: Academic (1974). Stute, W.: oscillation behavior of empirical processes. Ann. Probability 10, 86-107 (1982a). Stute, W.: bility 10,
IrHT"",.,l>n'lTl
for 1r""1"',.,,,,, 1 deIlsit.y estsmatcrs Ann. Proba-
Wellner, J.A.: Limit theorems for the the empirical distrfbution tion to the distribution function. Z. Wahrsch. verui. Gebiete 45, (1978). Yukich, J.:
Laws of large numbers for classes of functions.
Analysis 17, 245-260 (1985).
Department of Statistics University of Washington Seattle, WA 98195
J. Multivar.