Refinable C1 spline elements for irregular quad layout - UF CISE ...

Report 2 Downloads 91 Views
Refinable C 1 spline elements for irregular quad layout Thien Nguyen

¨ Peters Jorg

University of Florida

NSF CCF-0728797, NIH R01-LM011300

T. Nguyen, J. Peters (UF)

GMP 2016

1 / 20

Outline

1

Refinable, smooth, CAD compatible spline space incl. irregularities

2

Algorithm

3

Applications

T. Nguyen, J. Peters (UF)

GMP 2016

2 / 20

Refinable, smooth, CAD compatible spline space incl. irregularities

Outline

1

Refinable, smooth, CAD compatible spline space incl. irregularities

2

Algorithm

3

Applications

T. Nguyen, J. Peters (UF)

GMP 2016

3 / 20

Refinable, smooth, CAD compatible spline space incl. irregularities

Challenge: refinable, smooth and CAD compatible

I

multi-sided blends, irregularities

T. Nguyen, J. Peters (UF)

GMP 2016

4 / 20

Refinable, smooth, CAD compatible spline space incl. irregularities

Challenge: refinable, smooth and CAD compatible I I

multi-sided blends, irregularities subdivision surface: , nested space

/ infinite rings; / industrial design infrastructure; / integration rules;

T. Nguyen, J. Peters (UF)

GMP 2016

4 / 20

Refinable, smooth, CAD compatible spline space incl. irregularities

Challenge: refinable, smooth and CAD compatible I I

I

multi-sided blends, irregularities subdivision surface: , nested space / infinite rings; industrial design infrastructure; integration rules; Gk spline complex: , industrial design infrastructure

/ refinement book keeping (non-local); / or: not nested : problem for free-form surfaces! T. Nguyen, J. Peters (UF)

GMP 2016

4 / 20

Refinable, smooth, CAD compatible spline space incl. irregularities

Challenge: refinable, smooth and CAD compatible I I

I

multi-sided blends, irregularities subdivision surface: , nested space / infinite rings; industrial design infrastructure; integration rules;

Gk spline complex: , industrial design infrastructure / refinement book keeping (non-local); not nested Challenge: combine, for multi-sided configurations, splines with simple nested refinability.

T. Nguyen, J. Peters (UF)

GMP 2016

4 / 20

Refinable, smooth, CAD compatible spline space incl. irregularities

Challenge: refinable, smooth and CAD compatible I I

I

I

multi-sided blends, irregularities subdivision surface: , nested space / infinite rings; industrial design infrastructure; integration rules; Gk spline complex: , industrial design infrastructure / refinement book keeping (non-local); not nested

singularly parameterized surface , nested space, , industrial design infrastructure (Peters 91, Neamtu 94) (Reif 97) , proves C 1 surface (projection)

T. Nguyen, J. Peters (UF)

GMP 2016

4 / 20

Refinable, smooth, CAD compatible spline space incl. irregularities

Challenge: refinable, smooth and CAD compatible

I I

I

I

multi-sided blends, irregularities subdivision surface: , nested space / infinite rings; industrial design infrastructure; integration rules;

Gk spline complex: , industrial design infrastructure / refinement book keeping (non-local); not nested

singularly parameterized surface , nested space, industrial design infrastructure (Reif 97) , proves C 1 surface (projection)

/ fewer d.o.f. near irregularity than in regular regions

T. Nguyen, J. Peters (UF)

GMP 2016

4 / 20

Refinable, smooth, CAD compatible spline space incl. irregularities

Challenge: refinable, smooth and CAD compatible

I I

I

I

multi-sided blends, irregularities subdivision surface: , nested space / infinite rings; industrial design infrastructure; integration rules;

Gk spline complex: , industrial design infrastructure / refinement book keeping (non-local); not nested

singularly parameterized surface , nested space, industrial design infrastructure (Reif 97) , proves C 1 surface (projection)

/ fewer d.o.f. near irregularity than in regular regions / d.o.f. can not be symmetrically distributed as proper control points.

T. Nguyen, J. Peters (UF)

GMP 2016

4 / 20

Refinable, smooth, CAD compatible spline space incl. irregularities

Challenge: refinable, smooth and CAD compatible

I I

I

I

multi-sided blends, irregularities subdivision surface: , nested space / infinite rings; industrial design infrastructure; integration rules;

Gk spline complex: , industrial design infrastructure / refinement book keeping (non-local); not nested

singularly parameterized surface , nested space, industrial design infrastructure (Reif 97) , proves C 1 surface (projection)

/ fewer d.o.f. near irregularity than in regular regions / d.o.f. can not be symmetrically distributed as proper control points. / Surface shape is poor. T. Nguyen, J. Peters (UF)

GMP 2016

4 / 20

Refinable, smooth, CAD compatible spline space incl. irregularities

2 × 2 split construction I

2 × 2 split yields uniform d.o.f.: , regardless of vertex valences, each quad has 4 d.o.f.!

T. Nguyen, J. Peters (UF)

GMP 2016

5 / 20

Refinable, smooth, CAD compatible spline space incl. irregularities

2 × 2 split construction

I

I

2 × 2 split yields uniform d.o.f.: , regardless of vertex valences, each quad has 4 d.o.f.!

C 1 bi-3 basis functions , naturally compatible with bi-cubic PHT refinement

T. Nguyen, J. Peters (UF)

GMP 2016

5 / 20

Algorithm

Outline

1

Refinable, smooth, CAD compatible spline space incl. irregularities

2

Algorithm

3

Applications

T. Nguyen, J. Peters (UF)

GMP 2016

6 / 20

Algorithm

Algorithm Input

Input: B-spline-like control points cij` I

Recall: regular double-knot bi-3 B-spline coefficients are co-located with 1b 2b01 ´ ”inner” Bezier coefficients: c11 → 14 00 2b10 4b11 T. Nguyen, J. Peters (UF)

GMP 2016

7 / 20

Algorithm

Algorithm Output

k ,11 ´ Output: Bezier points bαβ obtained by projection P

T. Nguyen, J. Peters (UF)

GMP 2016

8 / 20

Algorithm

Algorithm: PSc I

Conversion to BB form: copy aijk := cijk for i, j ∈ {1, 2}

k make C 1 except a00 :=

T. Nguyen, J. Peters (UF)

Pn

k=1

k c11 /n.

GMP 2016

9 / 20

Algorithm

Algorithm: PSc I

Conversion to BB form: copy aijk := cijk for i, j ∈ {1, 2}

k make C 1 except a00 := I

Pn

k=1

k c11 /n.

Subdivide hk ,ij := Sak , i, j ∈ {1, 2}. When i + j > 2 then bk,ij := hk,ij .

T. Nguyen, J. Peters (UF)

GMP 2016

9 / 20

Algorithm

Algorithm: PSc I

Conversion to BB form: copy aijk := cijk for i, j ∈ {1, 2} Pn k k /n. make C 1 except a00 := k=1 c11

I

Subdivide hk ,ij := Sak , i, j ∈ {1, 2}. When i + j > 2 then bk,ij := hk,ij .

I

k ,11 Subpatches hαβ := hαβ :



   b11 h11 b21  := P h21  b12 h12 For all edges make C 1 : k+1 k k b10 := (b11 + b11 /2).

T. Nguyen, J. Peters (UF)

GMP 2016

9 / 20

Algorithm

Properties of the splines I

singular parameterization at irregularities.

T. Nguyen, J. Peters (UF)

GMP 2016

10 / 20

Algorithm

Properties of the splines I

singular parameterization at irregularities.

I

C 1 continuity (Reif 97: invertible Jacobian → exists regular reparameterization at 0)

T. Nguyen, J. Peters (UF)

GMP 2016

10 / 20

Algorithm

Properties of the splines I

singular parameterization at irregularities.

I

C 1 continuity (Reif 97: invertible Jacobian → exists regular reparameterization at 0)

I

For 1 < p < 4, the Lp norms of the main curvatures are finite

T. Nguyen, J. Peters (UF)

GMP 2016

10 / 20

Algorithm

Properties of the splines I

singular parameterization at irregularities.

I

C 1 continuity (Reif 97: invertible Jacobian → exists regular reparameterization at 0)

I

For 1 < p < 4, the Lp norms of the main curvatures are finite Refinable (nested spaces)

I

S

PSc −−−−→ SPSc     yP yP

(1)

S

PSc −−−−→ SPSc (PSPS = SPS since S does not change the projected function)

T. Nguyen, J. Peters (UF)

GMP 2016

10 / 20

Algorithm

Properties of the splines I

singular parameterization at irregularities.

I

C 1 continuity (Reif 97: invertible Jacobian → exists regular reparameterization at 0)

I

For 1 < p < 4, the Lp norms of the main curvatures are finite Refinable (nested spaces)

I

S

PSc −−−−→ SPSc     yP yP

(1)

S

PSc −−−−→ SPSc (PSPS = SPS since S does not change the projected function) I

Linear independence of fijk associated cijk (proof via functionals)

T. Nguyen, J. Peters (UF)

GMP 2016

10 / 20

Applications

Outline

1

Refinable, smooth, CAD compatible spline space incl. irregularities

2

Algorithm

3

Applications

T. Nguyen, J. Peters (UF)

GMP 2016

11 / 20

Applications

Applications: free-form surfaces

T. Nguyen, J. Peters (UF)

GMP 2016

12 / 20

Applications

Applications: free-form surfaces

T. Nguyen, J. Peters (UF)

GMP 2016

13 / 20

Applications

Applications: free-form surfaces

T. Nguyen, J. Peters (UF)

GMP 2016

14 / 20

Applications

Applications: Poisson local refinement

Poisson’s equation on the square [0, 6]2

.

Error -0.08:0.08,

T. Nguyen, J. Peters (UF)

-0.02:0.02,

GMP 2016

-0.01:0.01

15 / 20

Applications

Applications: Poisson

Error and approximate convergence rate (a.c.r.): close to 2−4 ` 1 2 3 4 5

||u − uh ||L2 0.0625 0.0098 9.7e-04 7.17e-5 5.29e-06

T. Nguyen, J. Peters (UF)

a.c.r. ||.||L2 6.4 10.1 13.5 13.56

||u − uh ||L∞ 0.0826 0.0194 0.0015 1.3e-4 9.87e-06

GMP 2016

a.c.r. ||.||L∞ 4.3 12.9 11.5 13.1

||u − uh ||H 1 0.4568 0.1448 0.0225 0.0033 4.78e-04

a.c.r.

3 6 6 6

16 / 20

Applications

Applications: Thin shell Scordelis-Lo roof

T. Nguyen, J. Peters (UF)

GMP 2016

17 / 20

Applications

Summary I

Irregularities in a C 1 bi-3 spline surface

T. Nguyen, J. Peters (UF)

GMP 2016

18 / 20

Applications

Summary I

Irregularities in a C 1 bi-3 spline surface

I

Refinable (nested)

T. Nguyen, J. Peters (UF)

GMP 2016

18 / 20

Applications

Summary I

Irregularities in a C 1 bi-3 spline surface

I

Refinable (nested)

I

Degrees of freedom = as for PHT splines (C 1 bi-3 spline)

T. Nguyen, J. Peters (UF)

GMP 2016

18 / 20

Applications

Summary I

Irregularities in a C 1 bi-3 spline surface

I

Refinable (nested)

I

Degrees of freedom = as for PHT splines (C 1 bi-3 spline)

I

, isogeometric analysis

T. Nguyen, J. Peters (UF)

GMP 2016

18 / 20

Applications

Summary I

Irregularities in a C 1 bi-3 spline surface

I

Refinable (nested)

I

Degrees of freedom = as for PHT splines (C 1 bi-3 spline)

I I

, isogeometric analysis / shape

T. Nguyen, J. Peters (UF)

GMP 2016

18 / 20

Applications

Summary I

Irregularities in a C 1 bi-3 spline surface

I

Refinable (nested)

I

Degrees of freedom = as for PHT splines (C 1 bi-3 spline)

I I

, isogeometric analysis / shape Thank You & Questions?

T. Nguyen, J. Peters (UF)

GMP 2016

18 / 20

Applications

Summary I

Irregularities in a C 1 bi-3 spline surface

I

Refinable (nested)

I

Degrees of freedom = as for PHT splines (C 1 bi-3 spline)

I I

, isogeometric analysis / shape Thank You & Questions?

T. Nguyen, J. Peters (UF)

GMP 2016

18 / 20

Applications

T. Nguyen, J. Peters (UF)

GMP 2016

19 / 20

Applications

linear independence

` Nonzero BB coefficients • of the basis function f21 . The coefficient marked ` k k additionally with an × is nonzero only for f21 . It is zero for f12 or f11 , k k = 0, . . . , n − 1 and for f21 , k 6= `.

T. Nguyen, J. Peters (UF)

GMP 2016

20 / 20