Results Background and objective Methods Conclusions Results

Report 5 Downloads 116 Views
Optimising the Angle of Lithotripsy Vikram  Nagarajn,  1,  Naomi  L  Sharma2,    Benjamin  W  Turney2,  Robin  O  Cleveland3   1University  of  Oxford    Medical  School,  UK;;  2Oxford  Stone  Group,  Department  of  Urology,  Nuffield  Department  of  Surgical  Sciences,  University  of  Oxford,  UK;  3InsOtute  of  Biomedical  Engineering,  University  of  Oxford,  UK      

Background and objective

Results

Results

Shockwave  Lithotripsy  (SWL)  is  a  highly  effecOve  first  line  technique  used   for   the   fragmentaOon   of   kidney   stones.   It   is   a   non-­‐invasive   procedure   that   can  be  performed  without  anaesthesia  and  has  few  side  effects.       In   this   study,   computer   modelling   was   used   to   assess   the   energy   loss   of   the  shockwave  at  differing  angles  of  entry  into  the  body.    

A  2-­‐D  CT  image  in   Mimics®  so\ware   with  the  0  and  45   degree  lines  in  place,   between  which   acousOc  aborpOons   were  calculated  at  50   increments.  

Methods Non-­‐contrast   CT   scans   from   50   paOents   booked   for   SWL   were   analysed   using  a  customised  MatLab  program.     Each   voxel   was   segmented   into:   bone,   fat,   air   and   other   so\   Ossue.   CalculaOons   were   performed   for   the   Storz   Modulith   SLX   F2   lithotriptor   with  a  focal  length  of  165  mm  and  full  width  aperture  angle  of  84.50.       The   acousOc   absorpOon   of   the   3-­‐dimensional   shockwave   cone   before   it   reached  its  focal  point  (the  site  of  the  stone)  was  calculated.       AbsorpOon  was  compared  as  a  funcOon  of  shock  wave  angle  starOng  from   an  angle  perpendicular  to  the  back  (0°)  and  increasing  by  up  to  45°  on  the   flank.     A   one-­‐way   ANOVA   analysis   with   Bonferroni   correcOon   was   used   to   calculate  the  opOmal  angle  in  which  to  direct  the  shock  waves  to  minimise   acousOc  absorpOon.     y  mm    

x  mm    

  A  representaOve  model  with  the  3-­‐ D  cone  overlaid,  using  Mimics®   so\ware.  IniOal  analysis  showed   that    differences  in  the  acousOc   properOes  of  so\  Ossue  were   minimal  and  it  was  the  presence  of   bone  and  the  thickness  of  so\   Ossue  that  dominated  energy   delivered  to  the  stone,  therefore   the  3-­‐D  model  did  not  require   details  of  so\  Ossue  type.    Only  the  voxels  proximal  to  the   stone  and  inside  the  body  were   included  in  the  absorpOon   calculaOon.        

The   acousOc   absorpOon   at   each   angle   for   each   paOent   was   standardised   to   loss   at   0°   to   allow   for   the   results   from   different   paOents   to   be   directly   comparable.   It   was   found   that   a   shock   wave   absorpOon  was  at  a  minimum  at  35°  (28.5%  reducOon  in  absorpOon).         However,  there  was  significant  spread  in  the  data  with  the  esOmated   absorpOon  at  35°  varying  from  30%  to  125%  of  that  at  0°;  of  parOcular   note  was  that  5  paOents  (10%)  suffered  more  aienuaOon  at  35°  than   at   0°.   These   5   paOents   all   had   stones   in   the   kidney   and   no   other   predicOve  parameter  was  found,  such  as  amount  of  fat  or  muscle.        

Conclusions Using   a   computaOonal   model   based   on   CT   scans   and   a  Storz   Modulith   lithotriptor,  these  results  suggest  that  the  angle  at  which  a  shock  wave   is  directed  towards  a  kidney  can  have  a  large  impact  on  the  acousOc   energy   delivered   to   a   kidney   stone   with   the   effecOve   absorpOon   varying  by  up  to  a  factor  of  four.           The   effect   is   highly   paOent-­‐dependent   and   suggests   that   shock   wave   placement  should  be  paOent-­‐specific  in  order  to  best  direct  the  shock   wave  on  the  stone  and  consequently  improve  fragmentaOon.