Riverbank Sediment Characterization & Preliminary Treatment Results

Report 1 Downloads 85 Views
Riverbank Sediment Characterization & Preliminary Treatment Results 1 Carol Ptacek and David Blowes

University of Waterloo Students: Krista Desrochers, M.Sc. Candidate Peng Liu, Ph.D. Candidate Blair Gibson, Ph.D. Candidate Ou Wang, B.Sc. Candidate 1

Objectives of Study

• Characterize solid-phase composition and forms

of Hg in the bank sediments

• Assess variability in the release of Hg from bank

leaching vs. bank erosion

• Identify potential

geochemical approaches to decrease the release of Hg from the sediments

2

Site Location

3

Site Location

South River RRM 0.1

Bank Stabilization Pilot Site

4

Sediment Studies Sediment Characterization  Bulk chemistry  Chemical

extractions  Mineralogy  XRF & XANES

Resuspension Experiments  Sediment ratio

variations  Colloid

characterization

Bank Filtration Experiments  Flow rate

fluctuations & stagnation  Colloid

characterization

 XRD & clay

speciation

5

Sediment Digestion

• •

Sediment Characterization

Large variation in total Hg in sediment Hg correlated to Cu 6

Carbon & Sulfur

Low C & S (SR) compared to other sites (LS) with elevated Hg 1.4

30

1.2

25

1.0

20

0.8

15

0.6

10

0.4

5

0.2

0

0.0

SR 1 SR 2 SR 3 SR 4 SR 5 S R 53 7-9 6 SW 1(A) 53 20(B 7-2 ) 73 SW (C) -12 SW (D) -1 53 3(E) 753 76(F 7-2 ) 2 8 53 7-3 (G) 3 53 9(H) 7-2 53 41(I ) 7-2 67 (J)

35

% Total Sulfur

% Total Carbon



Sediment Characterization

SR Total Carbon Lake Seds Total Carbon

SR Total Sulfur Lake Seds Total Sulfur

7

Chemical Extractions •

Hg speciation highly variable in South River bank sediment Extraction Solution

Target Hg Species

F1

Deionized Water

Water Soluble (HgCl2, HgSO4)

F2

0.01M HCl + 0.1M CH3COOH

Human Stomach Acid Soluble (HgSO4, HgO, Hgads)

1M KOH

Organo-chelated (Hgchel, Hg2Cl2)

F3

Sediment Characterization

A B C D E F(1) F(2) G H I J(1) J(2) SR1 SR2 SR3 SR4 SR5 SR6

SR

0 F4

F5

12M HNO3

Elemental Hg (Hg0, thiol-Hg, Hgamal)

Aqua Regia

Mercuric Sulfide (HgS, HgSe, HgAu)

20

40

60

80

100

% Hg Extracted • •

~2-9% of Hg mass extracted by DI water Greatest mass in “sulfide fraction 8

Sediment Characterization

SR6 Synchrotron Characterization Micro X-ray Fluorescence (XRF) Mapping and X-ray Absorption Near Edge Structure (XANES) Analysis of South River Sediment

9

XRF

Sediment Characterization

10

XANES

Sediment Characterization

 All Hg XANES spectra from sediment are similar  Implies same form of Hg at each location

11

XANES

Sediment Characterization

 Spectra are very similar to spectrum for metacinnabar,

implying HgS formation

12

Sediment Resuspension Tests

Resuspension Tests

Purpose:  What is the variability in Hg release due to riverbank erosion?  What portions are “dissolved” and “colloidal”?

5000 MWCO Filter Fraction

13

Ratio Variations

Resuspension Tests

-1

Total Hg (g L )

• Large variability in Hg release • Possible Hg solubility control 90 85 80

SR2

SR1

SR3

SR4

SR6

SR5

20 15 10 5 0 12

pH

10 8 6 4

Eh (mv)

700 600 500

Alkalinity (mg L-1 CaCO3)

400 300 160 120 80 40 0 0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

14 Mass of Sediment per 160 g SRW (g)

Filter Fractions

Resuspension Tests

-1

Total Hg (g L )

• Large variability in filter-size fractions • Greatest variation for SR3, SR5 & SR6 samples 90 85 80

SR2

SR1

SR3

SR5

SR6

15 10 5 0 12

pH

10 8 6 4

Eh (mv)

700 600 500

Alkalinity (mg L-1 CaCO3)

400 300 160 120 80 40 0 0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

15 Filter Pore Diameter (m)

Dynamic Leaching Experiments

 Slow flow of river water

through bank sediments to simulate advectivediffusive transport  Fluctuate velocity to

evaluate: mass transfer limitations  colloid-facilitated transport 

16

Control Columns

SR5 1000 0.45 m Filtered 0.2 m Filtered 0.1 m Filtered 5000 MWCO Filtered 3X Flow Increase

Total Hg (ng L-1)

800

600

SR5

SR3

SR6

Total Sed Hg (g g-1)

45.25

25.00

386.10

H2O Soluble Hg (g g-1)

3.16

1.15

33.10

400

200

0 0

10

20

30

40

Pore Volumes

PV/ week

2.7                  0.95

2.85                2.85

• Large fluctuations in Hg concentrations  • Release of Hg not correlated to  extraction and resuspension results • Increases in effluent Hg observed after  flow stagnations SR3

SR6 8000

6000 5000 Total Hg (ng L-1)

Total Hg (ng L-1)

6000

4000 3000 2000

4000

2000

1000 0

0 0

10

20

30

0

40

10

1.5

30

Pore Volumes

Pore Volumes

PV/ week

20

4.5

4.5

PV/ week

1.0

3.0

3.0 17

Control Column H2O Chemistry SR5 Control Column

Control Columns SR3 Control Column

SR6 Control Column

Note very high concentrations of Hg in SR3 effluent

-1

Total Hg (ng L )

8000 6000 4000 2000

Alkalinity -1 (mg L CaCO3)

12

600

11

500

10

400

9

300

8

200

7

100

6

0

Eh (mv)

Eh (mv)

pH

0

pH 3X Flow Increase

300 250 200 150 100 50

20

2-

-1

SO4 (mg L )

0

15

Note decline in SO4 concentrations

10 5 0 0

10

20

30

40

Pore Volumes

50

0

10

20

30

40

50

Pore Volumes

60

0

10

20

30

Pore Volumes

40

18

Filter Comparison

Control Columns

• Resuspension experiments ‐ substantial differences in  aqueous Hg for different filter sizes  • Transport experiments  ‐ less pronounced variations in Hg  for different filter sizes  Resuspension Tests

Total Hg (ng L-1)

10000

3000 0.45 m Filter 0.2 m Filter 0.1 m Filter 5000 MWCO Filter

2500

Total Hg (ng L-1)

80000

Saturated Control Columns

8000 6000 4000

0.45 m Filter 0.1 m Filter 5000 MWCO Filter

2000

1500

1000

500

2000 0

0 SR1

SR2

SR3

SR5

SR6

SR3

SR5

SR6

19

Treatment Studies

Static Screening Experiments

Dynamic Treatment Experiments



Hg-spiked South River water



Treatment of column effluent water



Stabilization additions



Leaching from coblended reactive media/sediment mixtures

20

Treatment  Treatment of Hg-spiked South River water  Blended biochar and Hg-spiked water

Mushroom Soil (B-MS)

Pine Woodchips (B-PW)

Poultry (B-PO)

 Preliminary Treatment of Bank Sediment (SR4 Sample)  Clays, chars and activated carbon, strong reductants, complexing agents

21

Biochar as a Reactive Media for Hg

 Desirable physical properties  Large particle size distribution, macroporosity, nano-porosity

 Desirable chemical properties  High charge density, hydrophilic, hydrophobic, acidic, basic

 Concerns  High nutrient and trace element content  Microbial habitat & substrate

 Potential applications  Soil amendment, ex-situ reactors, in-stream reactors, in-situ reactive

zones …

22

Biochar Functionalities (1) O (2)

O

OH

CH3

(10)

O

O

Treatment

O

OH

(1 2 )

H N

(1 )

O (8)

N

N

H N

(1 1 ) O

CH3 O

(9)

O R

O

O

(1 3 )

HN

O

(2 )

O

(1 0 ) NH2

N

H3C

(3)

OH

N N

(9 )

HO

(3 )

(8 )

H3C

(4)

N

N

HN

O CH3 H3C

O

(5)

O

+

(7)

(7 )

CH2

N

CH3

O

N

O

(6)

O

(4 )

CH3

O

O

NH2 N

H3C

Oxygen-containing

N

-

(5 )

(6 ) CH3

+

O

Nitrogen-containing

(2) SH

(1)

SH SH

(1)

S

SH 2 (3)

S

S

S

(1)

CH3

HO

O P

O

CH3

(3)

O

P

HO

S

(1)

O

(1)

O

O

O

(1)

HO

P

O

OH OH S

S

S

(6)

(4)

O

P

O O

O S O

(5)

Sulfur-containing

(1)

OH O

P OH

O

O

P

(2)

OH O

O P HO

O

Phosphorus-containing

23

Biochar Physical Properties A

Treatment

B

Silica mineral

C

D

24

Biochar Physical Properties element C O F Na Mg Al Si

wt % 75.73 6.72 0.29 0.2 0.36 0.18 0.07

element C O Na Mg Al

element P S Cl K Ca Fe

wt % 0.44 0.63 0.7 0.54 2.21 1.07

wt % element wt % 74.76 Si 0.08 16.95 P 0.32 0 K 0.67 0.22 Ca 0.67 0.19

A

C

Treatment element C O F Na Mg Al Si

wt % 29.17 37.55 0.22 0.13 0.13 0.78 25.23

element P S Cl K Ca Fe

element wt % element C 63.19 P O 23.88 S Na 0.2 Cl Mg 0.38 K Al 0.25 Ca Si 0.81 Fe

wt % 0.1 0.04 0 0.24 0.72 0.2

wt % 0.53 1.52 0.23 2.64 2.45 0.27

B

D

25

Biochar Batch Test Experiments

Treatment

 Evaluate

Hg removal  Nutrient and trace element release 

NW

SRW

B‐MS

Hg

Hg

B‐PW

B‐PO

Hg

Hg

 Experiments

Hg-spiked SRW  9000 ng L-1 Hg 

SRW

B-MS

B-PW

B-PO

26

Biochar Batch Test Experiments (Unwashed)

8000

7000

7000

20 10 0

20 10 0

8000

8000

7000 2000 1000 0

7000 2000 1000 0

SRW B-MS B-PW B-PO

2 weeks

8000

SRW B-MS B-PW B-PO

Hg Spiked  Experiments

THg ng L -1

Control  Experiments

T Hg ng L -1

48 hours

Treatment

 Greater than 95% removal of Hg from South River water at 2

weeks for all biochar samples 27

Biochar Batch Test Experiments (unwashed) B-MS

SRW

B-PW

Treatment

B-PO

pH

10 7 4

Eh [mv]

700 500

as CaCO3 mg L -1

Alkalinity

300 600 300 0 0

8

16 0

8

16 0

8

Time [Days]

16 0

8

16

Control Experiments Spiked Hg Experiments

Water Chemistry 28

Biochar Batch Test Experiment (unwashed)

NH3-N mg L -1

PO4-P mg L -1

SRW

B-MS

B-PW

Treatment

B-PO

12

Elevated phosphate, sulfate, chloride

6 0 0.80 0.40 0.00

SO4 mg L

-1

850

Anions and Nutrients

425 0

NO3 mg L

-1

-1 Cl mg L

160 80 0 5.0 2.5 0.0 0

8

16 0

8

16 0

Time [Days]

8

16 0

8

16

Control Experiments Spiked Hg Experiments

29

Biochar Batch Test Experiment (unwashed) SRW

B-MS

B-PW

Treatment

B-PO

-1

5

-1

Pb ng L

0.5 0.0 4.50

Pb ng L

-1

0 1.0

Cu g L

-1

Pb g L

Elevated As, Pb

As ng L

10

-1

-1 As g L

15

2.25 0.00 0

8

16 0

8

16 0

8

Time [Days]

16 0

8

16

Control Experiment Spiked Hg Experiment

Trace Elements 30

Comparison of Unwashed and Washed Biochar (Hg Removal)

Treatment

2 weeks

Control  Experiments

THg ng L -1

10

Washed biochars Unwashed biochars

5

300 150 0

100 50 0 SRW B-MS B-PW B-PO

THg Removal%

9000 4500

SRW B-MS B-PW B-PO

Hg Spiked  Experiments

T Hg ng L -1

0

 Greater than 92% Hg removed from South River for all washed

biochar samples at 2 weeks

31

Initial Reactive Media Batch H2O Chemistry Treated SR4 Sediment

Controls - no sediment

4

8

8

6

6

pH

0 10

4 2

0 500

0 500

400

400 Eh (mv)

2

300 200

200

0 400

0 400

100 0

Alkalinity (mg L-1 CaCO3)

100

200

4.0

300

100

300

Treated SR4 Sediment

0.9 0.6 0.3 0.0 0.40 0.30

300

0.20

200

0.08

100 0

0.04 0.00

SR4 Control Thiol I ATP B-MS B-WC Thiol II GAC MRM GI S ATP+Thiol I ATP+Thiol II GI+ATP GI+S S+ATP

4

•Thiol I has elevated NH3  •B‐MS & Thiol II have  elevated PO43‐

2

0 10

SR4 Control Thiol I ATP B-MS B-WC Thiol II GAC MRM GI S ATP+Thiol I ATP+Thiol II GI+ATP GI+S S+ATP

Eh (mv) Alkalinity (mg L-1 CaCO3)

6

•Thiol I control ~ 100 g L‐1 •Thiol II control pH