Robustness of Kernel Density Crime Hotspot Maps

Report 31 Downloads 16 Views
Robustness of Kernel Density  Crime Hotspot Maps Michael Camponovo Dr. Paul Zandbergen Department of Geography University of New Mexico

Outline • • • • •

Crime Mapping Experimental Design Kernel Density Predictive Crime Mapping Results and Discussion

Crime Mapping • Why map crimes? – Where are crime events located? • Who is the audience and what is the purpose? –Media –Public –Law Enforcement

http://bigcitycrimescope.files.wordpress.com/2011/02/chicago_violent_crime_map.png

Crime Mapping for Law Enforcement • Where to allocate limited resources? – Predict Future Crime Events Using Hotspots

Research Question How Reliable is predictive hotspot mapping? • Which factors influence this reliability?

Research Design • Crime Types: – Assault, Auto Burglary, Auto Theft, Burglary, Drugs, Homicide, Robbery

• Jurisdictions – – – – – –

Albuquerque, NM Arlington, TX Charlotte, NC Las Vegas, NV San Diego, CA Tampa, Fl

• Total of 6 Different Hotspot Methods – Point Patterns (Kernel Density, Nearest Neighbor Hierarchical  Clustering, Spatial and Temporal Analysis of Crime) – Aggregated Data (Grid‐Based Thematic, Local Moran’s I, Gi*)

• Use 2007 Data to Predict 2008

Research Design • Crime Types: – Assault, Auto Burglary, Auto Theft, Burglary, Drugs, Homicide, Robbery

• Jurisdictions – – – – – –

Albuquerque, NM Arlington, TX Charlotte, NC Las Vegas, NV San Diego, CA Tampa, Fl

• Total of 6 Different Hotspot Methods – Point Patterns (Kernel Density, Nearest Neighbor Hierarchical  Clustering, Spatial and Temporal Analysis of Crime) – Aggregated Data (Grid‐Based Thematic, Local Moran’s I, Gi*)

• Use 2007 Data to Predict 2008

Why Focus on Kernel Density? • Popular • Relatively Robust

http://www.statcan.gc.ca/pub/85‐561‐m/2008010/maps/map3‐3‐en.gif

Kernel Density Benefits • Easy to produce • Only need crime events • Aesthetically pleasing  output • Easy to understand

Limitations • Because it is a surface it  places crime events where  there might not be any  records • Because it is a surface it  places crime events where  it is highly unlikely crime  would occur, in a lake for  instance

How Does the Kernel Density Tool  Work?

http://jratcliffe.net/ware/spam1.htm

Kernel Density Interface

Kernel Density Output

Default Symbology

Kernel Density Symbology • Use ModelBuilder: – Remove all cells with value = 0 – Calculate the mean density of the remaining cells – Select cells that are: • • • • •

1 x Mean 2 x Mean 3 x Mean 4 x Mean 5 x Mean

Output Cell Size Default

Search Radius (Bandwidth) Default

Burglary, All Thresholds,  100 meter Bandwidth

Burglary, > 3 x Mean, Multiple  Bandwidths

Predictive Hotspot Values • Hit Rate (%) – Percentage of crimes in period 2 that falls in  hotspot derived from period 1 – Higher values are better

• Predictive Accuracy Index (PAI) – Ratio of hit rate to the area percentage – Higher values are better

Example Calculation Total Crimes  2007 Study  Hotspot  Total Crimes  in 2007 Area Area in 2008

2008 Crimes That Fall  Within the Hotspot

Collect the following Variables:

8975

1413 km2

37 km2

8562

3860

Hit Rate  

=

Predictive Accuracy Index

= 17.1

= 45%

Burglary Hit Rate (%) 50  meters

100  meters

150  meters

200  meters

250  meters

300  meters

350  meters

400  meters

450 meters

500  meters

> 5 x  Mean

11.4

12.5

12.0

12.4

12.4

12.5

12.4

12.6

12.8

12.7

> 4 x  Mean

14.1

17.2

17.1

17.4

18.0

19.1

19.7

20.2

20.6

20.7

> 3 x  Mean

21.1

21.4

24.6

25.5

27.8

29.7

31.1

32.3

32.5

32.9

> 2 x  Mean

25.1

32.1

36.4

38.5

42.1

44.0

46.2

48.2

49.6

50.6

>  Mean

42.7

50.9

55.6

57.0

62.3

65.8

68.2

70.3

72.0

73.2

Burglary Predictive Accuracy Index  (PAI) 50  meters

100  meters

150  meters

200  meters

250  meters

300  meters

350  meters

400  meters

450 meters

500  meters

> 5 x  Mean

152.8

51.4

28.3

20.8

16.8

14.6

13.1

12.3

11.7

11.1

> 4 x  Mean

112.3

40.8

22.7

16.1

13.1

11.9

10.8

10.0

9.4

9.0

> 3 x  Mean

83.4

27.8

17.2

12.4

10.6

9.4

8.6

8.1

7.6

7.2

> 2 x  Mean

53.1

19.1

12.1

9.1

7.9

7.0

6.5

6.1

5.8

5.6

>  Mean

28.9

11.2

7.7

5.9

5.2

4.7

4.4

4.2

4.0

3.8

Hit Rate vs PAI Hit Rate

80 > 5 * mean > 4 * mean > 3 * mean > 2 * mean > mean

70 60

Predictive Accuracy Index

180 160

> 5 * mean

140

> 4 * mean

120 50

> 3 * mean > 2 * mean

PAI

Hit Rate

100 40

> mean

80 30 60 20

40

10

20

0

0 0

100

200

300

Kernel Bandwidth (m)

400

500

0

100

200

300

Kernel Bandwidth (m)

400

500

Conclusions • No matter what tool you are using,  understand your parameters before accepting  the defaults • Search radius plays a major factor in Predictive  Crime Mapping using Kernel Density • There is no “perfect” set of parameters – must  have tradeoffs between kernel bandwidth and  hotspot threshold

Contact • Michael Camponovo – [email protected]

• Dr. Paul Zandbergen – [email protected] – www.paulzandbergen.com – Check Publications and Presentations

Thank You • New Mexico Geographic Information Council • National Institute of Justice – Project #: 2010‐696J‐00 – Principle  Paul Zandbergen, UNM Investigators: Timothy Hart, UNLV – Start Date: February 2010 – End Date:  June 2012