SAGA winter school Rational cuspidal plane curves Torgunn Karoline ...

Report 1 Downloads 92 Views
SAGA winter school Auron, France March 2010

Rational cuspidal plane curves

Torgunn Karoline Moe Centre of Mathematics for Applications University of Oslo, Norway

Torgunn Karoline Moe

Cuspidal curves Introduction

Rational cuspidal plane curves

Background Cuspidal curves Cremona Projections Conjecture Real cusps References

• How many and what kind of cusps can a rational

cuspidal plane curve have?

Torgunn Karoline Moe

Cuspidal curves Introduction

Overview Background Cuspidal curves

• Background

Projections

• Rational cuspidal plane curves of degree 3 and 4 • Constructions • Cremona transformations • Projections

Conjecture

• Rational cuspidal plane curves with many cusps

Real cusps

• The real perspective

Cremona

References

Torgunn Karoline Moe

Cuspidal curves Introduction Background Cuspidal curves Cremona Projections Conjecture Real cusps References

Background • The projective plane P2 over the complex numbers C

with coordinates (x : y : z). • A curve in P2 given by V(F ), where F ∈ C[x, y , z]. • A point a = (a0 : a1 : a2 ) on a curve V(F ) is called

singular if it is in the zero set of all the partial derivatives of F , • a ∈ V(Fx , Fy , Fz ).

• A curve can only have a finite number of singular

points. • Every singular point p has one or more tangent line(s). • For p = (0 : 0 : 1) singular,

F (x, y , 1) = fm (x, y ) + fm+1 (x, y ) + . . . + fd (x, y ). • The tangent line(s) of C at p is given by the zero

set(s) of each reduced linear factor of fm (x, y ).

Torgunn Karoline Moe

Cuspidal curves

Examples of singularities on curves

Introduction Background Cuspidal curves Cremona Projections Conjecture Real cusps References

The nodal cubic V(zx 2 − zy 2 − x 3 )

The cuspidal cubic V(zy 2 − x 3 )

• How and why are these different?

Torgunn Karoline Moe

Cuspidal curves Introduction Background Cuspidal curves

Invariants of singular points • Branches – the number of times the curve passes through the point. • A singularity with more than one branch is called a

multiple point. • A singularity with only one branch is called a cusp.

Cremona Projections Conjecture Real cusps References

• Multiplicity – the intersection multiplicity of a

general line and the curve at the point. • Is equal to the m in fm (x, y ) for p = (0 : 0 : 1).

• Tangent intersection – the intersection multiplicity of

the tangent line and the curve at the point. • Can investigate the inside of a singularity by blowing

it up, if necessary, several times.

Torgunn Karoline Moe

Cuspidal curves Introduction Background Cuspidal curves Cremona Projections Conjecture Real cusps References

Blowing up the cuspidal cubic

Torgunn Karoline Moe

Cuspidal curves Introduction Background Cuspidal curves Cremona Projections Conjecture Real cusps References

Torgunn Karoline Moe

Cuspidal curves Introduction

The multiplicity sequence of a cusp

Background

• Let mi denote the multiplicity of the remaining

Cuspidal curves

singularity after i blowing-ups. • For a cusp we have the multiplicity sequence m

Cremona Projections

• m = (m, m1 , . . . , ms ). • m≥m1 ≥ . . . ≥ms . • For every i there is a k ≥ 0 such that

Conjecture

mi−1

Real cusps

mi−1

References

= mi + . . . + mi+k , where mi =mi+1 = . . . =mi+k−1 . = k · mi + mi+k .

Torgunn Karoline Moe

Rational cuspidal plane curves Cuspidal curves Introduction Background Cuspidal curves Cremona Projections Conjecture

• A curve is called cuspidal if all its singularities are

cusps. • A (cuspidal) curve of degree d is rational ⇐⇒ the

genus formula holds. (d − 1)(d − 2) = 2

X singular points

X mi (mi − 1) ( ). 2 i

• How many and what kind of cusps can a rational

cuspidal curve have? • By the genus formula, the cuspidal cubic is the only

Real cusps References

rational cuspidal curve of degree 3. • A rational cuspidal plane curve of degree d must also

satisfy • B´ ezout: mp + mq ≤ d. • Matsuoka–Sakai: d < 3 · m,

where m is the highest multiplicity of the cusps.

Torgunn Karoline Moe

Rational cuspidal curves of degree 4

Cuspidal curves Introduction Background Cuspidal curves Cremona (2), (2), (2)

(22 ), (2)

Projections Conjecture Real cusps References

(3)

(23 )

Torgunn Karoline Moe

Cuspidal curves

Cremona transformations • Birational maps ψ,

S

Introduction Background Cuspidal curves Cremona Projections Conjecture Real cusps References

. ψ : P2 ∪ C

& 99K 7−→

P2 ∪ C0

• ψ : (x : y : z) 7−→ (G0 : G1 : G2 ), • G0 , G1 , G2 homogeneous polynomials in x, y , z of

the same degree n. • Linearly independent and without common factors. • V(G0 , G1 , G2 ) consists of n2 − 1 points.

• A linear transformation is a Cremona transformation. • A curve C = V(F ) is mapped to a total transform,

whose defining polynomial consists of • linear factors, • the defining polynomial of the strict transform C 0 .

Torgunn Karoline Moe

Cuspidal curves Introduction Background Cuspidal curves Cremona Projections Conjecture Real cusps References

• A general Cremona transformation involves blowing

up points and contracting lines. • Resolves a singularity on C by blowing it up. • Creates a cusp on C 0 by contracting a tangent line

of C that only intersects it in one point p. • The multiplicity of the cusp p 0 on C 0 equals the

intersection multiplicity of the tangent and C in p. • Note that we can create other singularities by

contracting other lines.

Torgunn Karoline Moe

Cuspidal curves

A quadratic Cremona transformation Introduction Background Cuspidal curves

• Blows up three points p, q, r . • Contracts three lines. • Note that the points and the lines do not have to be in P2 .

Cremona

• The strict transform C 0 has degree d 0 ,

Projections

d 0 = 2 · d − mp − mq − mr . • There are essentially three different quadratic Cremona transformations:

Conjecture Real cusps References

• ψ3 : (x : y : z) 7−→ (yz : xz : xy ). • ψ2 : (x : y : z) − 7 → (xy : z 2 : yz). • ψ1 : (x : y : z) 7−→ (y 2 − xz : yz : z 2 ).

Torgunn Karoline Moe

Cuspidal curves Introduction Background Cuspidal curves Cremona Projections Conjecture Real cusps References

The cuspidal cubic – [(2)]

Torgunn Karoline Moe

Cuspidal curves Introduction Background Cuspidal curves Cremona Projections Conjecture Real cusps References

The cuspidal cubic – [(2)]

Torgunn Karoline Moe

Cuspidal curves Introduction Background Cuspidal curves Cremona Projections Conjecture Real cusps References

The cuspidal cubic – [(2)]

Torgunn Karoline Moe

Cuspidal curves

The cuspidal cubic – [(2)]

Introduction Background Cuspidal curves Cremona Projections Conjecture Real cusps References

V(x 2 − 2xy + y 2 + xz + yz) 7−→ V(y 2 z − 2xyz + x 2 z + xy 2 + x 2 y )

Torgunn Karoline Moe

Cuspidal curves Introduction Background Cuspidal curves Cremona Projections Conjecture Real cusps References

The tricuspidal quartic – [(2), (2), (2)]

Torgunn Karoline Moe

Cuspidal curves Introduction Background Cuspidal curves Cremona Projections Conjecture Real cusps References

The tricuspidal quartic – [(2), (2), (2)]

Torgunn Karoline Moe

Cuspidal curves Introduction Background Cuspidal curves Cremona Projections Conjecture Real cusps References

The tricuspidal quartic – [(2), (2), (2)]

Torgunn Karoline Moe

Cuspidal curves

The tricuspidal quartic – [(2), (2), (2)]

Introduction Background Cuspidal curves Cremona Projections Conjecture Real cusps References

V(x 2 + y 2 + z 2 − 2xy − 2xz − 2yz) 7−→ V(y 2 z 2 + x 2 z 2 + x 2 y 2 − 2xyz 2 − 2xy 2 z − 2x 2 yz)

Torgunn Karoline Moe

Cuspidal curves Introduction Background Cuspidal curves Cremona

The power of Cremona transformations • It is possible to construct the other curves of degree

4 in similar ways. • Choosing the points and lines of the transformation

Projections

and the orientation of the curve C is sometimes complicated.

Conjecture

• [Fenske, Flenner & Zaidenberg (1996-1999)] used

Real cusps References

Cremona transformations to construct infinite series of cuspidal curves from cuspidal curves of low degree.

Torgunn Karoline Moe

Cuspidal curves Introduction Background Cuspidal curves Cremona Projections Conjecture Real cusps References

Projections φV : Pn 99K P2 ∪ ∪ C − 7 → C0 • C curve in Pn . • V a linear subspace in Pn of dimension (n − 3), called the centre of projection. • C 0 the image of C in P2 .

Torgunn Karoline Moe

Cuspidal curves

A special curve and some of its properties • The curve Cn in Pn given by

Introduction Background Cuspidal curves Cremona Projections

(s n : s n−1 t : . . . : st n−1 : t n ). is called the rational normal curve of degree n. • This is a smooth curve, and all points have the same

properties. • For each pair (s : t) corresponding to a point on Cn ,

Conjecture

the curve has a unique tangent line given by the linear span of

Real cusps



References

 ns n−1 (n − 1)s n−2 t . . . t n−1 0 . 0 s n−1 . . . (n − 1)st n−2 nt n−1

• The union of all the tangents is a surface called the

tangent developable T of Cn .

Torgunn Karoline Moe

Cuspidal curves Introduction Background

• Two points on Cn define a unique line in Pn .

Cuspidal curves

• Such a line is called a secant line.

Cremona

• The union of all the secant lines is a threefold called

Projections Conjecture Real cusps References

the secant variety S of Cn . • The tangent developable is contained in the secant

variety.

Torgunn Karoline Moe

Cuspidal curves Introduction Background Cuspidal curves Cremona Projections Conjecture Real cusps References

Cuspidal projections • A rational cuspidal plane curve C 0 of degree n can be constructed from Cn using a suitable centre of projection V : • V can not intersect the curve Cn . • That would reduce the degree of C 0 . • V must intersect the tangent developable T . • Get one cusp on C 0 for every intersection point of V and T . • V can not intersect the secant variety S outside T . • That would give other singularities.

• We use Cn and the kernel of V written on matrix

form to find the parametrization of C 0 . • The defining polynomial of C 0 can be found by

eliminating s and t.

Torgunn Karoline Moe

Cuspidal curves Introduction Background Cuspidal curves Cremona Projections Conjecture Real cusps References

The cuspidal cubic • C3 = (s 3 : s 2 t : st 2 : t 3 ). • The centre of projection V is a point on the tangent

developable. • Can choose V = (0 : 1 : 0 : 0). • Parametrization – C 0 = (s 3 : st 2 : t 3 ). • Defining equation – C 0 = V(y 3 − xz 2 ).

Torgunn Karoline Moe

Cuspidal curves Introduction Background

The tricuspidal quartic • C4 = (s 4 : s 3 t : s 2 t 2 : st 3 : t 4 ). • The centre of projection V is a line which intersects

Cuspidal curves Cremona Projections Conjecture Real cusps References

the tangent developable in three points. • V can be found using the appropriate conditions.

V =

  2 1 0 0 0 . 0 0 0 1 2

• C 0 = (s 3 t − 12 s 4 : s 2 t 2 : t 4 − 2st 3 ). • C 0 = V(8xy 3 − 3y 4 + 12xy 2 z − 4y 3 z + 4x 2 z 2 ).

Torgunn Karoline Moe

Cuspidal curves Introduction

Rational cuspidal curves of degree 5

Background

# Cusps

Cuspidal curves

1

Cremona Projections

2

Conjecture

3

Real cusps

4

References

Curve C1 C2 C3 C4 C5 C6 C7 C8

Cuspidal configuration (4) (26 ) (3, 2), (22 ) (3), (23 ) (24 ), (22 ) (3), (22 ), (2) (22 ), (22 ), (22 ) (23 ), (2), (2), (2)

# Curves 3 – ABC 1 2 – AB 1 1 1 1 1

Torgunn Karoline Moe

Cuspidal curves

Conjecture

Introduction

• There is only one rational cuspidal plane curve with

Background

more than three cusps – the curve of degree 5 with cuspidal configuration [(23 ), (2), (2), (2)]. • [Piontkowski (2007)] The only tricuspidal curves are

Cuspidal curves

• [Fenske, Flenner & Zaidenberg (1996-1999)]

Cremona

Series I II III

Projections Conjecture

m ¯p (d − 2) (d − 3, 2a ) (d − 4, 3a )

m ¯q (2a ) (3a ) (4a , 22 )

m ¯r (2d−2−a ) (2) (2)

For d d ≥4 d ≥5 d ≥7

• The curve of degree 5 with cuspidal configuration

[(22 ), (22 ), (22 )].

Real cusps References

d d 2a + 3 3a + 4

Result • [Tono (2005)] A rational cuspidal curve has ≤ 8

cusps.

Torgunn Karoline Moe

Cuspidal curves Introduction Background Cuspidal curves Cremona

Can all cusps be given real coordinates? • By the conjecture, a rational cuspidal curve will never have more than four cusps. • A linear transformation can move three cusps to real

coordinates. Projections Conjecture Real cusps References

• There is only one curve left to consider,

[(23 ), (2), (2), (2)].

Torgunn Karoline Moe

Cuspidal curves

• For real cuspidal curves, we have a modified Introduction Background Cuspidal curves

Klein–Schuh equality involving the curve C , its cusps and its dual curve C ∗ . d−

X real cusps on C

Cremona Projections Conjecture Real cusps References

(m − 1) = d ∗ −

X real cusps on

(m∗ − 1) C∗

• The dual of [(23 ), (2), (2), (2)] is the quartic [(23 )]. • Assuming the quintic is a real curve, and assuming

its cusps have real coordinates leads to a contradiction of Klein–Schuh. • Can the defining polynomial of [(23 ), (2), (2), (2)]

have complex coefficients while the cusps have real coordinates?

Torgunn Karoline Moe

Cuspidal curves Introduction

References T. Fenske Rational cuspidal plane curves of type (d, d − 4) with χ(ΘV hDi) ≤ 0.

Background Cuspidal curves Cremona Projections Conjecture

H. Flenner, M. Zaidenberg On a class of rational cuspidal plane curves. H. Flenner, M. Zaidenberg Rational cuspidal plane curves of type (d, d − 3). M. Namba. Geometry of projective algebraic curves.

Real cusps References

J. Piontkowski. On the Number of the Cusps of Rational Cuspidal Plane Curves. K. Tono On the number of the cusps of cuspidal plane curves.