Saving, investment and

Report 3 Downloads 134 Views
Saving,  capital  formation  and  comparative  economic  growth     - Saving,  investment  and  economic  growth     o Saving,  investment  and  the  income  account  identity   § Both  saving  and  investment  represent  resources  that  are  withheld   from  current  consumption   • Used  to  generate  future  benefits     § National  income  accounting  identity   • 𝑦 = 𝑐 + 𝑖 + 𝑔   • 𝑦 = 𝑐 + 𝑠 + 𝑡   • 𝑠 + 𝑡 − 𝑔 = 𝑖   o Left  hand  side  is  national  saving     § In  a  closed  economy  national  saving  is  equivalently  the  same  as   investment   - The  Solow-­‐Swan  model  of  economic  growth     o Also  called  the  neo-­‐classical  growth  model     § Predicts  the  existence  of  a  positive  relation  between  a  country’s   preparedness  to  put  aside  current  resources  for  the  purposes  of   saving  and  investment  and  its  long-­‐run  level  of  per  capital  GDP   o Interpreting  the  production  function  in  per  capita  income     § If  the  production  function  is  𝑦 = 𝐴𝑓(𝑘, 𝑙)   § Divide  the  primary  factors  of  production  and  output  by  the  size  of   the  labour  force  gives   • •

o o

o

! ! !

! !

,  

= 𝐴𝑓

! ! !

= 𝐴𝑓

!

 

Level  of  per  capital  GDP  will  depend  on     • Total  factor  productivity     • The  amount  of  capital  relative  to  the  size  of  the  labour  force   Capital  labour  ratio   § Diminishing  marginal  productivity   • Increases  in  the  capital-­‐labour  ratio  increase  per  capital  GDP   at  a  decreasing  rate   Left  hand  side  can  also  be  interpreted  as  the  level  of  per  capita  income  that   will  be  earned  in  the  economy  at  each  level  of  the  capital-­‐labour  ratio   The  steady  state   § A  situation  in  which  the  per  capita  capital  stock  is  neither  growing   nor  shrinking  and  per  capital  income  is  unchanging       Investment     § Two  types  of  investment   • Replacement  investment   o Involves  purchases  of  new  plant  and  equipment  that   is  either  to  replace  worn-­‐out  depreciated  capital  or   to  provide  new  capital  for  a  growing  population     o Keeps  the  capital-­‐labour  ratio  constant   • Net  investment   o Investment  that  adds  to  the  size  of  the  per  capita   capital  stock     • Investment  per  capita  can  be  written  as   §

o

!

o

!

!

=

!" !

+

!" !

 

§

Because  net  investment  only  changes  the  capital-­‐labour  ratio,   !

!"

!

!

𝛥 = • §

 

! !

=

!" !

! !

 

Replacement  investment   • Assumptions   o Capital  stock  depreciates  at  a  constant  rate  over   time,  𝑑   o Population  grows  at  a  constant  rate  of  𝑛   o Constant  returns  to  scale     • Therefore,  in  order  to  keep  the  capital-­‐labour  ratio   constant,  replacement  investment  must  grow  at  the   combined  rate  of  depreciation  and  population  growth     o

§

+𝛥

!" ! !

= 𝑑+𝑛

!

!

!

  !"

o = 𝑑 + 𝑛 +   ! ! ! Investment  per  worker   • Because  𝑠 + 𝑡 − 𝑔 = 𝑖,  (savings  equals  investment)   investment  per  worker  can  be  understood  as  the  proportion   of  total  income  devoted  to  saving     o o

• •

𝜃

! !

!

!

= 𝜃   ! Where  𝜃  is  the  savings  rate     !

= 𝑑+𝑛

! !

+𝛥

Rearranging  gives  𝛥

! !

! !

 

=𝜃

! !

− 𝑑+𝑛

! !

 

The  capital-­‐labour  ratio  will  grow  only  if  the  total   saving  in  the  economy  exceeds  replacement   investment   Diagrammatic  representation     § See  diagram   § Economy  has  an  automatic  tendency  to  reach  steady  state     o

o



!

If  operating  where   = 500,  then  total  saving  equals  $800   ! and  replacement  investment  equals  $600   o Total  investment  exceeds  replacement  investment   by  $200   !

§

§

o Per  capita  capital  stock  will  increase  until   = 1000   ! Growth  in  per  capita  income  occurs  only  when  the  economy  has  an   existing  capital-­‐labour  ratio  that  is  below  its  steady  state     • As  the  capital-­‐labour  ratio  increases,  diminishing  marginal   returns  set  in     o Means  that  subsequent  increases  in  the  capital-­‐ labour  ratio  has  less  and  less  of  an  impact  on  per   capita  income     Increase  in  population  growth     • If  the  level  of  investment  required  grows,  then  this  will  push   the  savings  rate  upwards     o Capital  is  required  to  fund  investment  –  increase  in   demand  for  capital  will  push  up  interest  rates,   encouraging  people  to  save  more  (higher  return  on   loans)    

o

o

                                                         

Implications     § Ceteris  paribus,  the  model  predicts  an  end  to  growth  in  per  capita   income   • Countries  that  are  poor  will  grow  at  a  relatively  faster  rate   than  those  that  are  rich     o Convergence  hypothesis     § Per  capita  income  in  poor  countries  will  grow  at  a  faster  rate  than  in   rich  countries,  as  long  as  both  groups  of  countries  have  the  same   long-­‐run  steady  state   Evidence   § Comparative  economic  growth   • The  name  given  to  the  study  of  different  cournties’  growth   experiences     § Negative  regression  line  can  be  fitted  to  OECD  economies  when   average  annual  growth  rate  since  1970  is  regressed  on  per  capita   GDP  in  the  base  period  in  1970   • Economies  have  the  same  characteristics  and  are  likely  to   have  the  same  steady  state   § On  small  subsets  of  economies  with  similar  characteristics,  the   convergence  hypothesis  holds     • Conditional  convergence