Section 8.2 Graphs of Polar Equations

Report 19 Downloads 61 Views
Section 8.2 Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f (θ), or more generally F (r, θ) = 0, consists of all points P that have at least one polar representation (r, θ) whose coordinates satisfy the equation.

EXAMPLE: Sketch the polar curve θ = 1. Solution: This curve consists of all points (r, θ) such that the polar angle θ is 1 radian. It is the straight line that passes through O and makes an angle of 1 radian with the polar axis. Notice that the points (r, 1) on the line with r > 0 are in the first quadrant, whereas those with r < 0 are in the third quadrant.

EXAMPLE: Sketch the following curves: (a) r = 2, 0 ≤ θ ≤ 2π. (b) r = θ, 0 ≤ θ ≤ 4π. (c) r = 2 cos θ, 0 ≤ θ ≤ π. 1

EXAMPLE: Sketch the curve r = 2, 0 ≤ θ ≤ 2π. Solution 1: Since r = 2, it follows that r2 = 4. But r2 = x2 + y 2 , therefore x2 + y 2 = 4 which is a circle of radius 2 with the center at the origin. Solution 2: We have r=2, theta=Pi6

-2

r=2, theta=2 Pi6 2

2

1

1

1

1

-1

2

-2

-2

1

-1

-1

-2

-2

-2

r=2, theta=5 Pi6 2

2

1

1

1

1

-1

2

-2

1

-1

2

-2

1

-1

-1

-1

-1

-2

-2

-2

r=2, theta=8 Pi6 2

2

1

1

1

1

2

-2

1

-1

2

-2

1

-1

-1

-1

-1

-2

-2

-2

r=2, theta=11 Pi6 2

2

1

1

1

1

2

-2

1

-1

2

-2

1

-1

-1

-1

-1

-2

-2

-2

2

2

r=2, theta=12 Pi6

2

-1

2

r=2, theta=9 Pi6

2

-1

2

r=2, theta=6 Pi6

2

r=2, theta=10 Pi6

-2

2

-1

r=2, theta=7 Pi6

-2

1

-1

-1

r=2, theta=4 Pi6

-2

r=2, theta=3 Pi6

2

2

EXAMPLE: Sketch the curve r = θ, 0 ≤ θ ≤ 4π. Solution: We have r=theta, theta=Pi3

-10

r=theta, theta=2 Pi3

10

10

10

5

5

5

5

-5

10

-10

-10

5

-5 -5

-10

-10

-10

r=theta, theta=5 Pi3 10

10

5

5

5

5

-5

10

-10

5

-5

10

-10

5

-5

-5

-5

-5

-10

-10

-10

r=theta, theta=8 Pi3 10

10

5

5

5

5

10

-10

5

-5

10

-10

5

-5

-5

-5

-5

-10

-10

-10

r=theta, theta=11 Pi3 10

10

5

5

5

5

10

-10

5

-5

10

-10

5

-5

-5

-5

-5

-10

-10

-10

3

10

r=theta, theta=12 Pi3

10

-5

10

r=theta, theta=9 Pi3

10

-5

10

r=theta, theta=6 Pi3

10

r=theta, theta=10 Pi3

-10

10

-5

r=theta, theta=7 Pi3

-10

5

-5

-5

r=theta, theta=4 Pi3

-10

r=theta, theta=3 Pi3

10

EXAMPLE: Sketch the curve r = 2 cos θ, 0 ≤ θ ≤ π. Solution 1: Since r = 2 cos θ, it follows that r2 = 2r cos θ. But r2 = x2 + y 2 and r cos θ = x, therefore x2 + y 2 = 2x. This can be rewritten as (x − 1)2 + y 2 = 1 which is a circle of radius 1 with the center at (1, 0). Solution 2: We have r=2cosHthetaL, theta=Pi12

r=2cosHthetaL, theta=2 Pi12

r=2cosHthetaL, theta=3 Pi12

1.0

1.0

1.0

0.5

0.5

0.5

0.5

-0.5

1.0

1.5

2.0

0.5

-0.5

1.0

1.5

2.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

r=2cosHthetaL, theta=4 Pi12

r=2cosHthetaL, theta=5 Pi12 1.0

1.0

0.5

0.5

0.5

0.5

1.0

1.5

2.0

0.5

-0.5

1.0

1.5

2.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

r=2cosHthetaL, theta=7 Pi12

r=2cosHthetaL, theta=8 Pi12 1.0

1.0

0.5

0.5

0.5

0.5

1.0

1.5

2.0

0.5

-0.5

1.0

1.5

2.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

1.0

1.5

1.0

1.5

r=2cosHthetaL, theta=10 Pi12

r=2cosHthetaL, theta=11 Pi12

r=2cosHthetaL, theta=12 Pi12

1.0

1.0

1.0

0.5

0.5

0.5

0.5

-0.5

1.0

1.5

2.0

0.5

-0.5

1.0

1.5

2.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

4

2.0

2.0

r=2cosHthetaL, theta=9 Pi12

1.0

-0.5

1.5

r=2cosHthetaL, theta=6 Pi12

1.0

-0.5

1.0

1.0

1.5

2.0

2.0

EXAMPLES:

5

EXAMPLE: Sketch the curve r = 1 + sin θ, 0 ≤ θ ≤ 2π (cardioid). Solution: We have r=1+sinHthetaL, theta=Pi6

-1.5

-1.0

r=1+sinHthetaL, theta=2 Pi6

2.0

2.0

2.0

1.5

1.5

1.5

1.0

1.0

1.0

0.5

0.5

0.5

0.5

-0.5

1.0

1.5

-1.5

-1.0

0.5

-0.5

1.5

1.5

1.0

1.0

1.0

0.5

0.5

0.5

0.5

1.0

1.5

-1.5

-1.0

0.5

-0.5

1.0

1.5

-1.5

-1.0

0.5

-0.5

-0.5

r=1+sinHthetaL, theta=8 Pi6

2.0

1.5

1.5

1.5

1.0

1.0

1.0

0.5

0.5

0.5

1.0

1.5

-1.5

-1.0

0.5

-0.5

1.0

1.5

-1.5

-1.0

0.5

-0.5

-0.5

r=1+sinHthetaL, theta=11 Pi6

2.0

1.5

1.5

1.5

1.0

1.0

1.0

0.5

0.5

0.5

-0.5

1.0

1.5

-1.5

-1.0

0.5

-0.5 -0.5

6

1.5

r=1+sinHthetaL, theta=12 Pi6

2.0

0.5

1.0

-0.5

2.0

-0.5

1.5

r=1+sinHthetaL, theta=9 Pi6

2.0

0.5

1.0

-0.5

2.0

-0.5

1.5

r=1+sinHthetaL, theta=6 Pi6

1.5

-0.5

1.0

-0.5

2.0

r=1+sinHthetaL, theta=10 Pi6

-1.0

-1.0

2.0

-0.5

-1.5

-1.5

2.0

r=1+sinHthetaL, theta=7 Pi6

-1.0

1.5

r=1+sinHthetaL, theta=5 Pi6

-0.5

-1.5

1.0

-0.5

r=1+sinHthetaL, theta=4 Pi6

-1.0

0.5

-0.5

-0.5

-1.5

r=1+sinHthetaL, theta=3 Pi6

1.0

1.5

-1.5

-1.0

0.5

-0.5 -0.5

1.0

1.5

EXAMPLE: Sketch the curve r = 1 − cos θ, 0 ≤ θ ≤ 2π (cardioid). Solution: We have r=1-cosHthetaL, theta=Pi6

-2.0

-1.5

-1.0

r=1-cosHthetaL, theta=2 Pi6 1.5

1.5

1.0

1.0

1.0

0.5

0.5

0.5

0.5

-0.5

-1.5

-1.0

-1.5

-1.0

-1.5

-1.0

-1.0

0.5

-0.5

-2.0

-1.5

-1.0

0.5

-0.5 -0.5

-1.0

-1.0

-1.0

-1.5

-1.5

-1.5

r=1-cosHthetaL, theta=5 Pi6

r=1-cosHthetaL, theta=6 Pi6

1.5

1.5

1.5

1.0

1.0

1.0

0.5

0.5

0.5

0.5

-0.5

-2.0

-1.5

-1.0

0.5

-0.5

-2.0

-1.5

-1.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

-1.5

-1.5

-1.5

r=1-cosHthetaL, theta=8 Pi6

r=1-cosHthetaL, theta=9 Pi6

1.5

1.5

1.5

1.0

1.0

1.0

0.5

0.5

0.5

0.5

-0.5

-2.0

-1.5

-1.0

0.5

-0.5

-2.0

-1.5

-1.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

-1.5

-1.5

-1.5

r=1-cosHthetaL, theta=10 Pi6

-2.0

-1.5

-0.5

r=1-cosHthetaL, theta=7 Pi6

-2.0

-2.0

-0.5

r=1-cosHthetaL, theta=4 Pi6

-2.0

r=1-cosHthetaL, theta=3 Pi6

1.5

r=1-cosHthetaL, theta=11 Pi6

r=1-cosHthetaL, theta=12 Pi6

1.5

1.5

1.5

1.0

1.0

1.0

0.5

0.5

0.5

0.5

-0.5

-2.0

-1.5

-1.0

0.5

-0.5

-2.0

-1.5

-1.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

-1.5

-1.5

-1.5

7

EXAMPLE: Sketch the curve r = 2 + 4 cos θ, 0 ≤ θ ≤ 2π. Solution: We have r=2+4cosHthetaL, theta=Pi6

r=2+4cosHthetaL, theta=2 Pi6

r=2+4cosHthetaL, theta=3 Pi6

3

3

3

2

2

2

1

1

1

1

2

3

4

5

6

1

2

3

4

5

6

1

-1

-1

-1

-2

-2

-2

-3

-3

-3

r=2+4cosHthetaL, theta=4 Pi6

r=2+4cosHthetaL, theta=5 Pi6 3

3

2

2

2

1

1

1

2

3

4

5

6

1

2

3

4

5

6

1

-1

-1

-1

-2

-2

-2

-3

-3

-3

r=2+4cosHthetaL, theta=7 Pi6

r=2+4cosHthetaL, theta=8 Pi6 3

3

2

2

2

1

1

1

2

3

4

5

6

1

2

3

4

5

6

1

-1

-1

-1

-2

-2

-2

-3

-3

-3

r=2+4cosHthetaL, theta=10 Pi6

r=2+4cosHthetaL, theta=11 Pi6 3

3

2

2

2

1

1

1

2

3

4

5

6

1

2

3

4

5

6

1

-1

-1

-1

-2

-2

-2

-3

-3

-3

8

5

6

2

3

4

5

6

2

3

4

5

6

r=2+4cosHthetaL, theta=12 Pi6

3

1

4

r=2+4cosHthetaL, theta=9 Pi6

3

1

3

r=2+4cosHthetaL, theta=6 Pi6

3

1

2

2

3

4

5

6

EXAMPLE: Sketch the curve r = cos(2θ), 0 ≤ θ ≤ 2π (four-leaved rose). Solution: We have r=cosH2thetaL, theta=Pi6

-1.0

r=cosH2thetaL, theta=2 Pi6

1.0

1.0

1.0

0.5

0.5

0.5

0.5

-0.5

1.0

-1.0

-1.0

0.5

-0.5 -0.5

-1.0

-1.0

-1.0

r=cosH2thetaL, theta=5 Pi6 1.0

1.0

0.5

0.5

0.5

0.5

-0.5

1.0

-1.0

0.5

-0.5

1.0

-1.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

r=cosH2thetaL, theta=8 Pi6 1.0

1.0

0.5

0.5

0.5

0.5

1.0

-1.0

0.5

-0.5

1.0

-1.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

r=cosH2thetaL, theta=11 Pi6 1.0

1.0

0.5

0.5

0.5

0.5

1.0

-1.0

0.5

-0.5

1.0

-1.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

9

1.0

r=cosH2thetaL, theta=12 Pi6

1.0

-0.5

1.0

r=cosH2thetaL, theta=9 Pi6

1.0

-0.5

1.0

r=cosH2thetaL, theta=6 Pi6

1.0

r=cosH2thetaL, theta=10 Pi6

-1.0

1.0

-0.5

r=cosH2thetaL, theta=7 Pi6

-1.0

0.5

-0.5

-0.5

r=cosH2thetaL, theta=4 Pi6

-1.0

r=cosH2thetaL, theta=3 Pi6

1.0

EXAMPLE: Sketch the curve r = sin(2θ), 0 ≤ θ ≤ 2π (four-leaved rose). Solution: We have r=sinH2thetaL, theta=Pi6

-1.0

r=sinH2thetaL, theta=2 Pi6

1.0

1.0

1.0

0.5

0.5

0.5

0.5

-0.5

1.0

-1.0

-1.0

0.5

-0.5 -0.5

-1.0

-1.0

-1.0

r=sinH2thetaL, theta=5 Pi6 1.0

1.0

0.5

0.5

0.5

0.5

-0.5

1.0

-1.0

0.5

-0.5

1.0

-1.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

r=sinH2thetaL, theta=8 Pi6 1.0

1.0

0.5

0.5

0.5

0.5

1.0

-1.0

0.5

-0.5

1.0

-1.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

r=sinH2thetaL, theta=11 Pi6 1.0

1.0

0.5

0.5

0.5

0.5

1.0

-1.0

0.5

-0.5

1.0

-1.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

10

1.0

r=sinH2thetaL, theta=12 Pi6

1.0

-0.5

1.0

r=sinH2thetaL, theta=9 Pi6

1.0

-0.5

1.0

r=sinH2thetaL, theta=6 Pi6

1.0

r=sinH2thetaL, theta=10 Pi6

-1.0

1.0

-0.5

r=sinH2thetaL, theta=7 Pi6

-1.0

0.5

-0.5

-0.5

r=sinH2thetaL, theta=4 Pi6

-1.0

r=sinH2thetaL, theta=3 Pi6

1.0

EXAMPLE: Sketch the curve r = sin(3θ), 0 ≤ θ ≤ π (three-leaved rose). Solution: We have r=sinH3thetaL, theta=Pi12

-1.0

r=sinH3thetaL, theta=2 Pi12

1.0

1.0

1.0

0.5

0.5

0.5

0.5

-0.5

1.0

1.0

-1.0

0.5

-0.5 -0.5

-1.0

-1.0

-1.0

r=sinH3thetaL, theta=5 Pi12 1.0

1.0

0.5

0.5

0.5

0.5

-0.5

1.0

-1.0

0.5

-0.5

1.0

-1.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

r=sinH3thetaL, theta=8 Pi12 1.0

1.0

0.5

0.5

0.5

0.5

1.0

-1.0

0.5

-0.5

1.0

-1.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

r=sinH3thetaL, theta=11 Pi12 1.0

1.0

0.5

0.5

0.5

0.5

1.0

-1.0

0.5

-0.5

1.0

-1.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

11

1.0

r=sinH3thetaL, theta=12 Pi12

1.0

-0.5

1.0

r=sinH3thetaL, theta=9 Pi12

1.0

-0.5

1.0

r=sinH3thetaL, theta=6 Pi12

1.0

r=sinH3thetaL, theta=10 Pi12

-1.0

0.5

-0.5 -0.5

r=sinH3thetaL, theta=7 Pi12

-1.0

-1.0

-0.5

r=sinH3thetaL, theta=4 Pi12

-1.0

r=sinH3thetaL, theta=3 Pi12

1.0

EXAMPLE: Sketch the curve r = sin(4θ), 0 ≤ θ ≤ 2π (eight-leaved rose). Solution: We have r=sinH4thetaL, theta=Pi6

-1.0

r=sinH4thetaL, theta=2 Pi6

1.0

1.0

1.0

0.5

0.5

0.5

0.5

-0.5

1.0

-1.0

-1.0

0.5

-0.5 -0.5

-1.0

-1.0

-1.0

r=sinH4thetaL, theta=5 Pi6 1.0

1.0

0.5

0.5

0.5

0.5

-0.5

1.0

-1.0

0.5

-0.5

1.0

-1.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

r=sinH4thetaL, theta=8 Pi6 1.0

1.0

0.5

0.5

0.5

0.5

1.0

-1.0

0.5

-0.5

1.0

-1.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

r=sinH4thetaL, theta=11 Pi6 1.0

1.0

0.5

0.5

0.5

0.5

1.0

-1.0

0.5

-0.5

1.0

-1.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

12

1.0

r=sinH4thetaL, theta=12 Pi6

1.0

-0.5

1.0

r=sinH4thetaL, theta=9 Pi6

1.0

-0.5

1.0

r=sinH4thetaL, theta=6 Pi6

1.0

r=sinH4thetaL, theta=10 Pi6

-1.0

1.0

-0.5

r=sinH4thetaL, theta=7 Pi6

-1.0

0.5

-0.5

-0.5

r=sinH4thetaL, theta=4 Pi6

-1.0

r=sinH4thetaL, theta=3 Pi6

1.0

EXAMPLE: Sketch the curve r = sin(5θ), 0 ≤ θ ≤ 2π (five-leaved rose). Solution: We have r=sinH5thetaL, theta=Pi6

-1.0

r=sinH5thetaL, theta=2 Pi6

1.0

1.0

1.0

0.5

0.5

0.5

0.5

-0.5

1.0

-1.0

-1.0

0.5

-0.5 -0.5

-1.0

-1.0

-1.0

r=sinH5thetaL, theta=5 Pi6 1.0

1.0

0.5

0.5

0.5

0.5

-0.5

1.0

-1.0

0.5

-0.5

1.0

-1.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

r=sinH5thetaL, theta=8 Pi6 1.0

1.0

0.5

0.5

0.5

0.5

1.0

-1.0

0.5

-0.5

1.0

-1.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

r=sinH5thetaL, theta=11 Pi6 1.0

1.0

0.5

0.5

0.5

0.5

1.0

-1.0

0.5

-0.5

1.0

-1.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

13

1.0

r=sinH5thetaL, theta=12 Pi6

1.0

-0.5

1.0

r=sinH5thetaL, theta=9 Pi6

1.0

-0.5

1.0

r=sinH5thetaL, theta=6 Pi6

1.0

r=sinH5thetaL, theta=10 Pi6

-1.0

1.0

-0.5

r=sinH5thetaL, theta=7 Pi6

-1.0

0.5

-0.5

-0.5

r=sinH5thetaL, theta=4 Pi6

-1.0

r=sinH5thetaL, theta=3 Pi6

1.0

EXAMPLE: Sketch the curve r = sin(6θ), 0 ≤ θ ≤ 2π (twelve-leaved rose). Solution: We have r=sinH6thetaL, theta=Pi6

-1.0

r=sinH6thetaL, theta=2 Pi6

1.0

1.0

1.0

0.5

0.5

0.5

0.5

-0.5

1.0

-1.0

-1.0

0.5

-0.5 -0.5

-1.0

-1.0

-1.0

r=sinH6thetaL, theta=5 Pi6 1.0

1.0

0.5

0.5

0.5

0.5

-0.5

1.0

-1.0

0.5

-0.5

1.0

-1.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

r=sinH6thetaL, theta=8 Pi6 1.0

1.0

0.5

0.5

0.5

0.5

1.0

-1.0

0.5

-0.5

1.0

-1.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

r=sinH6thetaL, theta=11 Pi6 1.0

1.0

0.5

0.5

0.5

0.5

1.0

-1.0

0.5

-0.5

1.0

-1.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

14

1.0

r=sinH6thetaL, theta=12 Pi6

1.0

-0.5

1.0

r=sinH6thetaL, theta=9 Pi6

1.0

-0.5

1.0

r=sinH6thetaL, theta=6 Pi6

1.0

r=sinH6thetaL, theta=10 Pi6

-1.0

1.0

-0.5

r=sinH6thetaL, theta=7 Pi6

-1.0

0.5

-0.5

-0.5

r=sinH6thetaL, theta=4 Pi6

-1.0

r=sinH6thetaL, theta=3 Pi6

1.0

EXAMPLE: Sketch the curve r = sin(7θ), 0 ≤ θ ≤ 2π (seven-leaved rose). Solution: We have r=sinH7thetaL, theta=Pi6

-1.0

r=sinH7thetaL, theta=2 Pi6

1.0

1.0

1.0

0.5

0.5

0.5

0.5

-0.5

1.0

-1.0

-1.0

0.5

-0.5 -0.5

-1.0

-1.0

-1.0

r=sinH7thetaL, theta=5 Pi6 1.0

1.0

0.5

0.5

0.5

0.5

-0.5

1.0

-1.0

0.5

-0.5

1.0

-1.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

r=sinH7thetaL, theta=8 Pi6 1.0

1.0

0.5

0.5

0.5

0.5

1.0

-1.0

0.5

-0.5

1.0

-1.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

r=sinH7thetaL, theta=11 Pi6 1.0

1.0

0.5

0.5

0.5

0.5

1.0

-1.0

0.5

-0.5

1.0

-1.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

15

1.0

r=sinH7thetaL, theta=12 Pi6

1.0

-0.5

1.0

r=sinH7thetaL, theta=9 Pi6

1.0

-0.5

1.0

r=sinH7thetaL, theta=6 Pi6

1.0

r=sinH7thetaL, theta=10 Pi6

-1.0

1.0

-0.5

r=sinH7thetaL, theta=7 Pi6

-1.0

0.5

-0.5

-0.5

r=sinH7thetaL, theta=4 Pi6

-1.0

r=sinH7thetaL, theta=3 Pi6

1.0

EXAMPLE: Sketch the curve r = 1 +

1 sin(10θ), 0 ≤ θ ≤ 2π. 10

Solution: We have r=1+sinH10thetaL10, theta=Pi6

-1.0

1.0

1.0

0.5

0.5

0.5

0.5

-0.5

1.0

0.5

-0.5

1.0

-1.0

0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

r=1+sinH10thetaL10, theta=5 Pi6 1.0

1.0

0.5

0.5

0.5

0.5

-0.5

1.0

-1.0

0.5

-0.5

1.0

-1.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

r=1+sinH10thetaL10, theta=8 Pi6 1.0

1.0

0.5

0.5

0.5

0.5

1.0

-1.0

0.5

-0.5

1.0

-1.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

r=1+sinH10thetaL10, theta=11 Pi6 1.0

1.0

0.5

0.5

0.5

0.5

1.0

-1.0

0.5

-0.5

1.0

-1.0

0.5

-0.5

-0.5

-0.5

-0.5

-1.0

-1.0

-1.0

16

1.0

r=1+sinH10thetaL10, theta=12 Pi6

1.0

-0.5

1.0

r=1+sinH10thetaL10, theta=9 Pi6

1.0

-0.5

1.0

r=1+sinH10thetaL10, theta=6 Pi6

1.0

r=1+sinH10thetaL10, theta=10 Pi6

-1.0

-1.0

-0.5

r=1+sinH10thetaL10, theta=7 Pi6

-1.0

r=1+sinH10thetaL10, theta=3 Pi6

1.0

r=1+sinH10thetaL10, theta=4 Pi6

-1.0

r=1+sinH10thetaL10, theta=2 Pi6

1.0

EXAMPLE: Match the polar equations with the graphs labeled I-VI: (a) r = sin(θ/2)

(b) r = sin(θ/4)

(c) r = sin θ + sin3 (5θ/2)

(d) r = θ sin θ

(e) r = 1 + 4 cos(5θ)

(f)

17

√ r = 1/ θ