Sensitive Detection of Organophosphorus Pesticides in Medicinal ...

Report 4 Downloads 33 Views
Supporting Information to:

Sensitive Detection of Organophosphorus Pesticides in Medicinal Plants

Using

Ultrasound-Assisted

Dispersive

Liquid−Liquid

Microextraction Combined with Sweeping Micellar Electrokinetic Chromatography Jin-Chao Wei, Ji Hu, Ji-Liang Cao, Jian-Bo Wan, Cheng-Wei He, Yuan-Jia Hu, Hao Hu, and Peng Li *

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China

Table S1. Effects of dispersive solvent type on the extraction recoveries (%) of the investigated pesticides in UA-DLLME a.

Solvent

Extraction recoveries of pesticide (%) 4 5 6

1

2

3

7

8

9

MeCN

63.8±13.1

47.5±6.4

50.2±5.5

46.5±3.0

46.0±4.4

53.2±4.4

71.2±3.4

68.0±3.4

62.4±4.9

Acetone

63.7±4.8

65.9±1.3

66.5±5.6

61.1±3.9

62.4±8.0

60.1±7.3

65.5±7.6

63.6±11.3

57.7±4.2

MeOH

15.3±1.0

7.1±2.1

6.6±2.3

12.2±1.0

14.5±3.1

19.4±3.5

13.6±1.8

29.5±8.1

42.7±2.0

EtOH

41.3±6.1

31.3±1.1

32.9±2.4

34.2±1.3

32.6±1.9

42.5±1.0

46.2±1.4

49.5±3.5

42.1±2.0

a) Data are presented as Mean ± S.D. from three independent experiments. Other conditions: dispersive solvent, 1.0 mL; extraction solvent, 200 μl of chloroform; and aqueous solution, 5 mL of 4% NaCl solution. Pesticide assignment: 1. chlorfenvinphos, 2. parathion, 3. quinalphos, 4. fenitrothion, 5. azinphos-ethyl, 6. parathion-methyl, 7. fensulfothion, 8. methidathion, and 9. paraoxon.

Table S2. Effects of extraction solvent volume on the extraction recoveries (%) of the investigated pesticides in UA-DLLME a.

Volume (μL)

Extraction recoveries of pesticide (%) 4 5 6

1

2

3

7

8

9

150

66.2±7.3

68.6±6.1

70.6±4.6

70.3±1.4

68.5±1.7

68.9±2.8

68.3±1.1

63.0±0.4

66.4±1.8

200

100.0±13.7

85.5±8.3

90.3±4.3

87.2±13.7

88.5±9.9

83.3±10.6

79.9±3.7

81.2±8.1

73.7±8.8

250

81.3±1.9

75.7±26.5

72.3±20.3

74.2±20.1

74.8±19.8

74.7±11.9

77.3±5.3

75.3±4.1

71.9±11.0

300

98.6±18.3

89.8±11.2

89.8±1.0

87.0±8.6

90.3±7.2

86.0±7.5

82.3±2.4

77.6±3.6

77.8±6.9

350

98.2±10.7

85.9±15.9

88.3±10.2

93.7±10.9

93.6±16.0

93.3±10.7

85.3±3.8

82.2±2.4

80.9±8.3

400

92.4±7.0

88.6±17.7

86.0±8.6

89.6±10.3

88.1±12.8

87.2±10.8

85.4±6.3

86.7±6.6

81.7±11.5

a) Data are presented as Mean ± S.D. from three independent experiments. Other conditions: dispersive solvent, 1.0 mL of acetone; extraction solvent, chloroform; and aqueous solution, 5 mL of 4% NaCl solution. Pesticide assignment: 1. chlorfenvinphos, 2. parathion, 3. quinalphos, 4. fenitrothion, 5. azinphos-ethyl, 6. parathion-methyl, 7. fensulfothion, 8. methidathion, and 9. paraoxon.

Table S3. Effects of amounts of PSA on the extraction recoveries of the investigated pesticides in the cleanup procedure a.

PSA (mg)

Extraction recoveries of pesticide (%) 4 5 6

1

2

3

7

8

9

100

94.9±3.7

74.7±6.1

76.9±9.4

85.5±7.4

93.0±14.1

85.1±10.0

90.5±10.1

100.1±14.1

95.8±14.6

200

103.7±4.6

104.6±7.4

108.4±6.0

99.9±6.9

116.3±9.9

103.0±6.9

100.8±7.4

107.8±8.6

104.0±9.5

400

104.2±9.4

88.7±4.7

88.6±5.1

105.0±13.0

106.6±9.3

93.1±4.4

93.7±7.8

108.1±9.9

104.2±11.6

800

102.6±4.4

90.7±11.3

98.0±9.7

93.5±2.8

108.2±4.4

90.3±6.0

85.9±6.2

99.5±4.9

92.2±5.1

a) Data are presented as Mean ± S.D. from three independent experiments. Pesticide assignment: 1. chlorfenvinphos, 2. parathion, 3. quinalphos, 4. fenitrothion, 5. azinphos-ethyl, 6. parathion-methyl, 7. fensulfothion, 8. methidathion, and 9. paraoxon.

Table S4. Effects of amounts of GCB on the extraction recoveries of the investigated pesticides in the cleanup procedure a.

GCB (mg)

Extraction recoveries of pesticide (%) 4 5 6

1

2

3

7

8

9

10

99.9±10.9

87.0±18.5

67.1±17.1

100.9±7.1

69.9±23.5

102.3±10.9

94.4±10.9

93.9±20.3

98.7±15.0

30

98.9±7.4

85.0±5.8

59.7±3.3

98.5±5.4

57.6±11.4

98.5±4.3

89.0±7.7

84.7±13.1

88.5±8.6

50

88.4±5.2

80.5±2.8

46.6±2.5

95.5±4.4

42.6±4.6

100.1±5.9

90.5±6.5

89.4±8.0

90.5±8.0

80

87.8±10.0

77.6±11.7

40.2±2.8

73.5±2.5

32.2±12.5

88.8±4.6

86.5±5.8

92.8±12.9

97.5±7.2

100

95.1±9.9

78.3±14.3

33.7±8.0

80.4±5.7

22.9±1.2

91.4±4.0

88.3±5.9

87.3±6.9

89.9±11.8

a) Data are presented as Mean ± S.D. from three independent experiments. Pesticide assignment: 1. chlorfenvinphos, 2. parathion, 3. quinalphos, 4. fenitrothion, 5. azinphos-ethyl, 6. parathion-methyl, 7. fensulfothion, 8. methidathion, and 9. paraoxon.

Table S5. The optimized conditions for the procedures of UA-DLLME and sample cleanup. Procedure

Conditions

Optimal values

UA-DLLME

Type and volume of extraction solvent

Acetone, 1.0 mL

Type and volume of dispersive solvent

Chloroform, 350 μL

Addition of salt

Sodium chloride, 300 mg

Ultrasound-assisted extraction time

1 min

Amount of GCB

30 mg

Amount of PSA

200 mg

Sample Cleanup

Table S6. Comparison of UA-DLLME−sweeping-MEKC with other analytical methods for determination of OPPs in real samples. LODa

Methods

Extraction time

Samples amount

(μg kg )

(min)

(g)

410-2250



2.5

-1

LLE−GC-FIDb

Analytes Dimethoate, chlorpyrifos, diazinon, fenitrothion, malathion, chlorfenvinphos, methidathion, fenthion and tetrachlorvinphos

Samples

Reference

Vegetable

[1]

Medicinal plant

[2]

Peanut oil

[3]

Methamidophos, trichlorfon, dichlorvos, acephate, formothion, omethoate, monocrotophos, phorate, demeton, dimethoate, diazinon, disulfoton, phosphamidon, parathion-methyl, GC-FPD

c

1-10



0.5

chlorpyrifos-methyl, fenitrothion, malathion, fenthion, parathion, chlorpyrifos, isocarbophos, isofenphos-methyl, quinalphos, methidathion, ditalimfos, profenofos, ethion, triazophos, phosmet, azinphos-methyl, and phosalone, Phorate, diazinon, tolclofosmethyl, fenitrothin, malathion,

QuEChERS−GC-MSd

0.7-1.6

22.5

5

UASE−DLLME−SPO−HPLC-UVe

1-4

35

1

Diazinon, fenthion, phosalone and chloropyrifose

Vegetable

[4]

MEKC-QD/LIFf

50-180

70

10

Mevinphos, methidathion, diazinon and phosalone.

Vegetable

[5]

MISPE−CEg

4.9

270

50

Trichlorfon

Vegetable

[6]

Medicinal plant

This work

fenthion, isocarbophos, quinalphos and phenamiphos

Chlorfenvinphos, parathion, quinalphos, fenitrothion, UA-DLLME−sweeping-MEKC

h

2-8

27

0.5

azinphos-ethyl, parathion-methyl, fensulfothion, methidathion and paraoxon.

a b

LOD, limit of detection. Liquid-liquid extraction−gas chromatography-flame ionization detector (large volume injection).

c

Gas chromatography with flame photometric detector. The ‘Quick, Easy, Cheap, Effective, Rugged and Safe’ method−gas chromatography-mass spectrometry. e Ultrasonic assisted solvent extraction−dispersive liquid−liquid microextraction−solidification of floating organic drop−high performance liquid chromatography-ultraviolet detector. d

f

Micellar electrokinetic chromatography with immobilized quantum dot-laser induce fluorescence detection.

g

Molecularly imprinted solid-phase extraction coupled to capillary electrophoresis. Ultrasound-assisted dispersive liquid−liquid microextraction combined with sweeping micellar electrokinetic chromatography.

h

Reference [1] Cortes, J. M.; Sanchez, R.; Diaz-Plaza, E. M.; Villen, J.; Vazquez, A. Large volume GC injection for the analysis of organophosphorus pesticides in vegetables using the through oven transfer adsorption desorption (TOTAD) interface. J. Agric. Food Chem. 2006, 54, 1997−2002. [2] Zhao, X.S.; Kong, W.J.; Wei, J.H.; Yang, M.H. Gas chromatography with flame photometric detection of 31 organophosphorus pesticide residues in Alpinia oxyphylla dried fruits, Food Chem. 2014, 162, 270-276. [3] Su, R.; Xu, X.; Wang, X.H.; Li, D.; Li, X.Y.; Zhang, H.Q., Yu, A.M. (2011). Determination of organophosphorus pesticides in peanut oil by dispersive solid phase extraction gas chromatography-mass spectrometry. J. Chromatogr. B. 2011, 879, 3423-3428. [4] Pirsaheb, M.; Fattahi, N.; Shamsipur, M. Determination of organophosphorous pesticides in summer crops using ultrasound-assisted solvent extraction followed by dispersive liquideliquid microextraction based on the solidification of floating organic drop. Food Control. 2013, 34, 378-385. [5] Chen, Q.D.; Fung Y.S. Capillary electrophoresis with immobilized quantum dot fluorescence detection for rapid determination of organophosphorus pesticides in vegetables. Electrophoresis 2010, 31, 3107-3114. [6] Zhao, T.; Gao, H.J.; Wang, X.L.; Zhang, L.M.; Qiao, X.G.; Xu, Z.X. Study on a Molecularly Imprinted Solid-Phase Extraction Coupled to Capillary Electrophoresis Method for the Determination of Trace Trichlorfon in Vegetables. Food Anal. Methods. 2014, 7, 1159-1165.

Figure S1 The electropherograms of the Lycium chinense sample spiked with analytes at 0.5 mg kg−1 (A) and the Lycium chinense sample (B). Pesticide assignment: 1. chlorfenvinphos, 2. parathion, 3. quinalphos, 4. fenitrothion, 5. azinphos-ethyl, 6. parathion-methyl, 7. fensulfothion, 8. methidathion, 9. paraoxon, and u. unknown.

Figure S2 The electropherograms of the Dioscorea opposite sample spiked with analytes at 0.5 mg kg−1 (A) and the Dioscorea opposite sample (B). Pesticide assignment: 1. chlorfenvinphos, 2. parathion, 3. quinalphos, 4. fenitrothion, 5. azinphos-ethyl, 6. parathion-methyl, 7. fensulfothion, 8. methidathion, 9. paraoxon, and u. unknown.

Recommend Documents