slides - FMMB 2014

Report 5 Downloads 13 Views
50 Shades of Rule Composition From Chemical Reactions to Higher Levels of Abstraction

Jakob L. Andersen, Christoph Flamm Daniel Merkle, Peter Stadler Department of Mathematics and Computer Science University of Southern Denmark

FMMB 2014, Noumea September 22, 2014

1

Metabolic Flux Pattern and Atom Maps

Kl¨ unemann et al. (2014): Computational tools for modeling xenometabolism of the human gut microbiota, Trends in Biotechnology, 32(3):157-165 2

Isotope Labeling Experiments 1. Introduce a isotope labeled substrate into the cell culture at metabolic steady state. 2. Allow the system to reach an isotopic steady state. 3. Measure (e.g. NMR, MS) relative labeling in metabolic intermediates and by products. 4. Estimate fluxes from these measurements. I

Quantitative interpretation requires a mathematical model, which relates metabolic flux to isotopomere abundance.

Figure adapted from [Wiechert, 2001]

3

Atom Transition Network Estimating fluxes from isotopomere patterns is an inverse problem.

The bijective atom-atom mapping between reaction educts and products must be known.

Getting this information is at least a graph isomorphism-hard problem. 6

9

C

C

2 C C

C

4

C

8

1 C

5

8C

C C

7

C1

C

9

7C

5 C

C

2

3 C

C

4

3 C

6

4

Outline

I

Graph Rewriting and the Double Pushout Formalism (Elementary Reactions)

I

Shades of Rule Composition

I

Results and Atom Traces (Composed Reactions) I I I

An Enzymatic Reaction: β-Lactamase A Pathway: Glycolysis (An Autocatalytic Reaction: Formose)

Molecule Encoding A molecule is an undirected labelled graph. Vertex label ≡ atom type (e.g., “C” or “O-”) Edge label ≡ bond type (e..g, “-”, “=” or “#”)

H -

-

O -

H

H

O

C = C O H

H C C

- H

H

(a) Visualization of encoding

HO

O

H

(b) Prettified visualization

OH

(c) Open Babel visualization Figure: 1,2-ethenediol 6

Reaction Patterns – Graph Transformation Rules A reaction pattern is a graph transformation rule, in the Double Pushout Formalism: p = (L ← K → R). L C

K C

O

C C

H

O

R C

O

C C

H

O

C

O

C H

O

Figure: Transformation rule for aldol addition

(As for the graphs: the rules are not restricted to chemistry.)

7

Reactions – Application of Transformation Rules aldol addition

1,2-ethenediol + formaldehyde −−−−−−−−→ glyceraldehyde L

K C

C O

O

C O

H

R C

C

O

H O

H

O

H

G

H

H

O

D

H

C

C O

C

H

O

H H

C

C O

C

H

O

H H

C

O

H

O C

C H

H H

O

C H

C

C

C

H H

O

H

H

8

Double Pushout Approach

Double pushout L

l

m

G

K

r

k ρ

D

R n

λ

H

9

Pushout and Pullback : Rule Composition l

r

l

1 1 p1 = (L1 ← − K1 − → R1 )

r

2 2 p2 = (L2 ← − K2 − → R2 )

Rule composition L1

l1

u1 L

s1

K1

r1

v1

(1)

C1

R1

L2 e1

e2

t1

E

s2

w1

(3)

w2

l2

K2

(2)

v2 C2

r2

R2 u2

t2

R

K

10

Pushout and Pullback : Rule Composition l

r

l

1 1 p1 = (L1 ← − K1 − → R1 )

r

2 2 p2 = (L2 ← − K2 − → R2 )

Rule composition L1

l1

u1 L

s1

K1

r1

v1

(1)

C1

R1

L2 e1

e2

t1

E

s2

w1

(3)

w2

l2

K2

(2)

v2 C2

r2

R2 u2

t2

R

K

q

qr

l A composition (L ← − K −→ R) = p1 ∗E p2 can be defined1 and exists2 , ...

1 2

Ehrig et al. (1991): Parallelism and Concurrency in High-Level Replacement Systems. Math. Struct. Comp.C, 1:361–404 Golas (2010): Analysis and Correctness of Algebraic Graph and Model Transformations. Wiesbaden, Vieweg+Teubner

10

One Shade of Composing Rules (straight-forward) R1 is a super-graph of L2 L1

r1

R1

L2

r2

R2

=⇒

L∼ = L1

r

R

R2

One Shade of Composing Rules (straight-forward) R1 is a super-graph of L2 L1

H2 C H2 C H2 C C H2

r1

H2 C CH CH H2 C

R1

L2

r2

H2 C CH

r1

C

H2 C H2 C

CH3 H2 C

H2 C H2 C C H2

H2 C CH CH H2 C

C H2

H2 C CH CH H2 C

r

C

C

C

R2

C

H2 C

C C

CH

CH

C C H2

r2

C

C

C

C C

H2 C CH

C H2

C C

CH3

H2 C CH3

R

C CH

H2 C CH

r

L∼ = L1

=⇒

R2

CH3

A Darker Shade of Composing Rules (masochistic) R1 is a super-graph of a connected component of L2 L1

r1

R1

L12

L1 r2

L22

R2

r

=⇒

R

R2

L22

12

A Darker Shade of Composing Rules (masochistic) R1 is a super-graph of a connected component of L2 L1

r1

R1

L12

L1 r2

r

=⇒

R2

L22

H2 C H2 C

H2 C CH

H2 C

H2 C

r1

H2 C

CH C H2

C CH

C

CH

C

H2 C

C

CH C H2

C C

r2

C

H2 C

C CH

H2 C

R2

C C

r

H2 C

C

C C

CH C H2

C

C

CH

H2 C

C C

C

C H2

H2 C

R

L22

C C

12

And an Even Darker Shade of Composing Rules (perverted)

The matching morphism is a common subgraph

L1

r1

R1

L2

r2

R2

=⇒

L

r

R

13

And an Even Darker Shade of Composing Rules (perverted)

The matching morphism is a common subgraph

L1

r1

R1

r2

L2

C C

=⇒

C C

C

R2

C

r1

C

C

C

C C

C

C

C

C C

C C

C

C

C C

r2

C

r

C

C

C

C

C

C

C

C C

C

C

C

C

R

C C

C

C

C

r

L

C C C

13

A Lighter Shade of Composing Rules

Parallel Composition L1 L2

r1 r2

R1 =⇒ R2

L∼ = L1 ∪ L2

r

R∼ = R1 ∪ R2

14

β-Lactamase

+



15

β-Lactamase

+



Step 1 Lys73 deprotonates Ser70, which initiates a nucleophilic addition onto the carbonyl carbon of the beta-lactam, forming a tetrahedral intermediate. Step 2 The tetrahedral intermediate collapses, cleaving the C-N bond in the beta-lactam, the nitrogen deprotonates Ser130. Step 3 Ser130 deprotonates Lys73. Step 4 Glu166 deprotonates water, which initiates a nucleophilic addition at the carbonyl carbon, forming a new tetrahedral intermediate. Step 5 The tetrahedral intermediate collapses, cleaving the acyl-enzyme bond and liberating Ser70, which in turn deprotonates the Glu166.

Holliday et al. (2005): MACiE: A Database of Enzyme Reaction Mechanisms. Bioinformatics 21 (2005) 4315–4316

15

β-Lactamase

L r1 :

K

R

C

C

C

C

C

C

OH

C

O

C

C O

H2 N

C

C

H

O

H2 N

C O C

C

O−

H3 N+

C

β-Lactamase L r1 :

K

C

C

C

C

C

C

OH

C

O

C

O

C O

H2 N

C

C

H

O

H2 N

L

C

C

N

C

C

O

C

H



NH3 + C

O

C O−

C N

C

C

r5 :

C O

C

N

C

OH

C

H

C

O

HO

O

HO

C

C

OH

O

C

N

R N OH

O

C C

C

C

C N

O

C C

OH

O−

O

O

K

O−

C

OH

C

L N

NH2

R

O

C

C C

C

NH2

K O

O

C

C

C H2 O

C O

O

L O

C

R

H

O−

C NH O−

K C

O

O O

L r3 :

C

C N

O O

C

H3 N+

R

C C

OH

r4 :

O−

C

K

C C

r2 :

R

C

C O

H

O

C

C C O

C OH

C

OH O−

C C O

Rule Composition - β-Lactamase ıG ◦ r1 ◦ r2 ◦ r3 ◦ r4 ◦ r5 ◦ ıH

Rule Composition - β-Lactamase ıG ◦ r1 ◦ r2 ◦ r3 ◦ r4 ◦ r5 ◦ ıH Atom Traces: N H2

N H2

CO 2 H H

C O

C

8

O

N H2

O C

H

O

CO 2 H H

N

H NH 2

H N

O

O

C

Ph

H

CO 2 H

10

O

NH 2

CO 2 H

O

O

N H

S

H N

C

N C

H

Ph

H O

H

S

CO 2 H

C

CO 2 H

CO 2 H CO 2 H

CO 2 H

CO 2 H

NH 2

C

NH 2 C NH 2

CO 2

-

Catalytic amino acids: Serine, Lysine, Aspartate

NH 2

C CO 2

-

Rule Composition - β-Lactamase ıG ◦ r1 ◦ r2 ◦ r3 ◦ r4 ◦ r5 ◦ ıH Atom Traces: N H2

N H2

CO 2 H N H C2

CO H 2 HO

O

H

H NH 2

O

8

O

NH 2 C

O

N

CO 2 H

H

NH 2H

C

10 O O

C

C

CO 2 2

NH 2

-

NH 2

CO 2 -

Catalytic amino acids: Serine, Lysine, Aspartate

Ph

H N

O

N

O

H N

S

H CO 2 H S

CO 2 H

CO 2 H

CO 2 H

NH 2

C

NH 2

H N

O C

O

10

HN

C

O

CO 2 H

CO 2 H

NH 2

CNH

O

O H

H

H

CO 2 HC

CO 2 H

CO 2 H

C

C

Ph

H

H

O

NH 2

CO 2 H

CO 2 H

N H2

CO 2 H

C S

CO 2 H

N H2

CO 2 H

C

N

S

2

C

O O

O CO H H

CO 2 H

Ph H N

N C

H

H

H

O

8

C

H N

O C

N H2

Ph

H

CO 2 H

NH 2

C C

CO 2

CO 2 -

-

NH 2

Rule Composition - β-Lactamase

For all permutations σ: ıG ◦ rσ(1) ◦ . . . rσ(5) ◦ ıH

18

Rule Composition - β-Lactamase

For all permutations σ: ıG ◦ rσ(1) ◦ . . . rσ(5) ◦ ıH Well defined compositions, leading to the overall expected rule: (r1 , r2 , r3 , r4 , r5 ) (r1 , r2 , r4 , r3 , r5 ) (r1 , r2 , r4 , r5 , r3 ) ⇒ r3 (H+ -exchange reaction between amino acids) is the recycling step, which can be applied concurrently to steps r4 and r5 .

18

Rule Composition - β-Lactamase Alternative for step 2: Protonation of the β-lactam nitrogen occurs before the C-N bond cleavage1 (r1 , r1b , r3 , r2b , r4 , r5 ) (r1 , r1b , r2b , r3 , r4 , r5 ) (r1 , r1b , r2b , r4 , r3 , r5 ) (r1 , r1b , r2b , r4 , r5 , r3 )

(r1b , r1 , r3 , r2b , r4 , r5 ) (r1b , r1 , r2b , r3 , r4 , r5 ) (r1b , r1 , r2b , r4 , r3 , r5 ) (r1b , r1 , r2b , r4 , r5 , r3 )

1

Atanasov et al. (2000): Protonation of the beta-lactam nitrogen is the trigger event in the catalytic action of class A beta-lactamases. PNAS, 97(7) (2000) 3160–3165

19

Recap: Central Carbon Metabolism

Figure from Noor et al (2010) Central Carbon Metabolism as a Minimal Biochemical Walk between Precursors for Biomass and Energy, J Mol Cell 39:809-820 | DOI 10.1016/j.molcel.2010.08.031

20

Glycolysis

Transformation Rules: r1 Pyranose-furanose

r7 Phosphomutase

r2 Furanose-linear

r8 Enolase

r3 Ketose-aldose

r9 Keto-enol

r4 ATP-phosphorylation

r10 NAD+-oxoreductase

r5 ATPdephosphorylation

r11 Lactonohydrolase

r6 NAD+phosphorylation

r12 Hydrolyase r13 Reverse aldolase

21

Carbon Atom Trace of Glycolysis Embden-Meyerhof-Parnas (EMP) pathway: Glucose → 2 GAP

}|

z

{

ıG(EMP) ◦ r4 ◦ r1 ◦ r4 ◦ r2 ◦ r13 ◦ r3

◦ (r6 ◦∅ r6 ) ◦ (r5 ◦∅ r5 ) ◦ (r7 ◦∅ r7 ) ◦ (r8 ◦∅ r8 ) ◦ (r5 ◦∅ r5 ) ◦ (r9 ◦∅ r9 ) ◦ ıH(EMP) {z

|

}

2 GAP → 2 Pyruvate

The Entner-Doudoroff (ED) pathway: ıG(ED) ◦ r4 ◦ r10 ◦ r11 ◦ r12 ◦ r13 ◦ r6 ◦ r5 ◦ r7 ◦ r8 ◦ r5 ◦ r9 ◦ ıH(ED) |

{z

}

Glucose → GAP + Pyruvate

|

{z

}

GAP + Pyruvate → 2 Pyruvate

22

Carbon Atom Trace of Glycolysis O

O

6

PO

5

1

4

2

HO

O

6

PO

OH

3

1 2

HO

5

O

PO

1

5

OH

O 1 2

5

OH

1

OH

HO

1

OP

2

O

4

3

HO

O

+

OH

OH

6

PO

3

OP

6

HO

5 4

O

PO

1

PO

OH

OP

6

5

PO

O

1

HO

O

O

6

1 2

5

OH 2 3

4

O

3

O HO

HO

1

OP

2 3

O

HO

1

O

HO

3

O

4

O

PO

2

5 4

-

O

HO

6

PO

OP

3

HO

O

PO

Reaction databases usually list only products, educts, and (sometimes) the type of transformation, but not the atom map itself.

1 2

3

O

4

HO OH

2

5

O

OP

2

3

OH

O

OH

2 4

OH

OH

6

PO

OH 3

1

5

3

HO

5

PO

OH

OH

4

O

6

OP

2

OH 4

HO

OH

Glucose ⇒ 2 Pyruvate 6

2 3

6

OH

3

O OH

PO

2

1

4

HO

1

HO

OH

OH

5 4

OH

OH

6

O

6

HO

3

OH

PO

OH

5 4

O

Rule composition: all possible atom traces, here for the glycolysis EMP and ED pathways

The Formose Chemistry Four Rules: L H C

O C

C

K

R

H

H

O C

C

O C

(a) Keto-to-enol (r1 ). (Enol-to-keto (r1−1 )) L C

K C

O

C C

H

O

R C

O

C C

H

O

C

O

C H

O

(b) Aldol addition (r2 ). (Reverse aldol addition (r2−1 ))

24

Formose Cycle(s) OH

O

O

HO

HO

OH

OH

HO

O

HO

+

+

O O

OH

OH

OH

OH

O

OH

OH HO

HO

+ OH

OH

OH

OH

O

OH

OH

OH

O

OH HO

HO

O

HO

OH

OH

HO

O

HO

OH

+

+ OH

O OH

OH

OH

OH OH

OH

OH O

25

Carbon Atom Traces in Formose

26

Conclusions

27

Conclusions

27

Conclusions

Rule composition in the DPO framework I

rigorously grounded in category theory

I

automatic coarse graining inference of

I

I I

all atom traces alternative relative timing

27