slides - Loïc Paulevé

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks Loïc Paulevé1 , Geoffroy Andrieux2 , Heinz Koeppl1,3 1 ETH

Zürich 2 IRISA Rennes, France 3 IBM Research Zürich

25th International Conference on Computer Aided Verification July 13–19, 2013 - Saint Petersburg, Russia

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Biological Networks E.g., Signalling Networks

a

+

c

-

+

e

+

+ +

b

d

f

L. Paulevé, G. Andrieux, H. Koeppl

2/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Biological Networks E.g., Signalling Networks

a

+

c

Components Genes, proteins, complexes, ...

-

+

e

+

+

+

b

Activations Positive influence (a increase may promote c increase). Inhibitions Negative influence (b increase may promote d decrease).

d

-

Typical settings 100 to +10,000 components Few information on kinetics

f

L. Paulevé, G. Andrieux, H. Koeppl

2/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Qualitative Models for Biological Networks a

c

1

1

a

+

0

e

c

-

0

1

e +

0

b

+

d

1

0

+

+

b

2

1

d

f

-

1

f

0 0

L. Paulevé, G. Andrieux, H. Koeppl

3/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Qualitative Models for Biological Networks a

c

1

No population ⇒ qualitative levels

1

+

a 0

e

c

-

0

Automata networks - Sync / async - Boolean/multi-valued - ...

1

e +

0

+

b 0

d

`1

1

Specify partial or complete cooperations.

+

+

b

2

-

`1 1

d

f

-

1

f

0 0

L. Paulevé, G. Andrieux, H. Koeppl

3/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Qualitative Models for Biological Networks a

c `2

1

a

No population ⇒ qualitative levels

1

+

0

c

e

`2

-

0

Automata networks - Sync / async - Boolean/multi-valued - ...

1

e +

0

+

b 0

d

`2

1

Specify partial or complete cooperations.

+

+

b

2

1

d

f

-

1

f

0 0

L. Paulevé, G. Andrieux, H. Koeppl

3/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Qualitative Models for Biological Networks a

c

1

a

+

0

No population ⇒ qualitative levels

`3

1

e

c

-

0

Automata networks - Sync / async - Boolean/multi-valued - ...

1

e +

0

b

+

d

1

0

Specify partial or complete cooperations.

+

+

b

2

-

`3 1

d

f

-

1

f

0 0

L. Paulevé, G. Andrieux, H. Koeppl

3/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Qualitative Models for Biological Networks a

c

1

No population ⇒ qualitative levels

1

a

+

0

e

c

-

0

e +

`4

0

Specify partial or complete cooperations.

+

+

b

b

+

d

1

0

Automata networks - Sync / async - Boolean/multi-valued - ...

1

`4

2

1

d

f

-

1

f

0 0

L. Paulevé, G. Andrieux, H. Koeppl

3/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Qualitative Models for Biological Networks a

c

1

No population ⇒ qualitative levels

1

a

+

0

e

`5c

-

0

Automata networks - Sync / async - Boolean/multi-valued - ...

`51

e +

0

b

+

d

1

0

Specify partial or complete cooperations.

+

+

b

2

1

d

f

-

1

f

0 0

L. Paulevé, G. Andrieux, H. Koeppl

3/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Qualitative Models for Biological Networks a

c

1

No population ⇒ qualitative levels

1

a

+

0

e

c

-

0

Automata networks - Sync / async - Boolean/multi-valued - ...

1

e +

0

b

+

d

1

0

Specify partial or complete cooperations.

+

+

b

2

1

d

f

-

1 How modify the system to prevent e1 reachability?

f

0 0

L. Paulevé, G. Andrieux, H. Koeppl

3/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Cut Sets for Reachability a

c

1

Set of local states that if all disabled break reachability from given initial states

1

a

+

0

e

c

-

0

1

e.g. {c1 , d2 }

e +

0

b

+

d

1

0

+

+

b

2

1

d

f

-

1

f

0 0

L. Paulevé, G. Andrieux, H. Koeppl

4/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Cut Sets for Reachability a

c

1

Set of local states that if all disabled break reachability from given initial states

1

a

+

0

e

c

-



0

1

e.g. {c1 , d2 }

e +

0

b

+

d

1

0

+

+

b

2

1

d

f

-

1

f

0 0

L. Paulevé, G. Andrieux, H. Koeppl

4/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Cut Sets for Reachability a

c

1

Set of local states that if all disabled break reachability from given initial states

1

a

+

0

e

c

-



0

1

e.g. {c1 , d2 }

e +

+

b

b

+

d

1

0

Applications - Potential therapeutic targets - Refute model if reachability still occurs in the modified (real) system

0

+

2

1

d

f

-

1

f

0 0

L. Paulevé, G. Andrieux, H. Koeppl

4/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Challenges

Naive algorithm – M: automata network; ς: set of initial states CutSets ← ∅ For ω ∈ ℘(Local States) ordered by cardinality: if (@ω 0 ∈ CutSets : ω 0 ⊂ ω) and ∀s ∈ ς, (M ω, s) 2 EF zi : CutSets ← CutSets ∪ {ω}. Goal: scalable with biological networks complexity • numerous automata, all different; • few local states per automaton.

Contribution: under-approximation of cut sets • some will be missed, some will be too thick (non-minimal, for the model); • handle networks with more than 9,000 nodes. No candidate enumeration, no model-checking.

L. Paulevé, G. Andrieux, H. Koeppl

5/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Challenges

Naive algorithm – M: automata network; ς: set of initial states CutSets ← ∅ For ω ∈ ℘(Local States) ordered by cardinality: if (@ω 0 ∈ CutSets : ω 0 ⊂ ω) and ∀s ∈ ς, (M ω, s) 2 EF zi : CutSets ← CutSets ∪ {ω}. Goal: scalable with biological networks complexity • numerous automata, all different; • few local states per automaton.

Contribution: under-approximation of cut sets • some will be missed, some will be too thick (non-minimal, for the model); • handle networks with more than 9,000 nodes. No candidate enumeration, no model-checking.

L. Paulevé, G. Andrieux, H. Koeppl

5/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Overview Automata network

Graph of Local Causality

Under-approximation of Cut Sets Prior work: over-/under-approximation of reachability in large-scale biological networks. [Paulevé et al. in Math. Struct. in Comp. Sci. 2012] L. Paulevé, G. Andrieux, H. Koeppl

6/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Graph of Local Causality • Causality of a3 . • Initial context ς = {a 7→ {1}; b 7→ {1}; c 7→ {1, 2}; d 7→ {2}}.

a3

a1 →∗ a3

b3

b1

c2

b1 →∗b3

b1 →∗b1

c2 → ∗ c2

d2

L. Paulevé, G. Andrieux, H. Koeppl

c1 →∗c2

d1 →∗d2

7/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Graph of Local Causality • Causality of a3 . • Initial context ς = {a 7→ {1}; b 7→ {1}; c 7→ {1, 2}; d 7→ {2}}.

a3

Local state

a1 →∗ a3

b3

b1

c2

b1 →∗b3

b1 →∗b1

c2 → ∗ c2

d2

L. Paulevé, G. Andrieux, H. Koeppl

c1 →∗c2

d1 →∗d2

7/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Graph of Local Causality • Causality of a3 . • Initial context ς = {a 7→ {1}; b 7→ {1}; c 7→ {1, 2}; d 7→ {2}}.

a3

Local state Objective from initial context

a1 →∗ a3

b3

b1

c2

b1 →∗b3

b1 →∗b1

c2 → ∗ c2

d2

L. Paulevé, G. Andrieux, H. Koeppl

c1 →∗c2

d1 →∗d2

7/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Graph of Local Causality • Causality of a3 . • Initial context ς = {a 7→ {1}; b 7→ {1}; c 7→ {1, 2}; d 7→ {2}}.

a3

Local state Objective from initial context Solution - prior steps

a1 →∗ a3

b3

b1

c2

b1 →∗b3

b1 →∗b1

c2 → ∗ c2

d2

L. Paulevé, G. Andrieux, H. Koeppl

c1 →∗c2

d1 →∗d2

7/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Graph of Local Causality • Causality of a3 . • Initial context ς = {a 7→ {1}; b 7→ {1}; c 7→ {1, 2}; d 7→ {2}}.

a3

a1 →∗ a3

b3

b1

c2

c1 →∗c2

Soundness criteria ∗ ∗ bObjective →∗c2state of each 1 → b3 1 is impossible from any stateb1if→ at bleast onec2local solution is disabled. E.g. a1 →∗a3 is impossible in M {b3 , b1 } and in M {b3 , c2 } d2

L. Paulevé, G. Andrieux, H. Koeppl

d1 →∗d2

7/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Computing GLC for Automata Networks a

b

3

?

`4

`3

`1 `1

2

`5

`2

2

`2

b3

`6

1

a1 →∗a3

3

1

(ignore order, count, synchronism)

c

d Complexity (construction + size of GLC)

2

2

`3

`4

`5

1

`6

• polynomial in the total number of local states; • exponential in the number of local states

1

within one automaton

⇒ efficient with a small number of local states per automaton, whereas a very large number of automata can be handled. L. Paulevé, G. Andrieux, H. Koeppl

8/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Computing GLC for Automata Networks a

b

3

?

`4

`3

`1 `1

2

`5

`2

2

`2

b3

`6

1

a1 →∗a3

3

1

(ignore order, count, synchronism)

c

d Complexity (construction + size of GLC)

2

2

`3

`4

`5

1

`6

• polynomial in the total number of local states; • exponential in the number of local states

1

within one automaton

⇒ efficient with a small number of local states per automaton, whereas a very large number of automata can be handled. L. Paulevé, G. Andrieux, H. Koeppl

8/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Computing GLC for Automata Networks a

b

3

?

`4

`3

`1 `1

2

`5

`2

2

`2

b3

`6

1

a1 →∗a3

3

b1

c2

1

(ignore order, count, synchronism)

c

d Complexity (construction + size of GLC)

2

2

`3

`4

`5

1

`6

• polynomial in the total number of local states; • exponential in the number of local states

1

within one automaton

⇒ efficient with a small number of local states per automaton, whereas a very large number of automata can be handled. L. Paulevé, G. Andrieux, H. Koeppl

8/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Computing GLC for Automata Networks a

b

3

?

`4

`3

`1 `1

2

`5

`2

2

`2

b3

`6

1

a1 →∗a3

3

b1

c2

1

(ignore order, count, synchronism)

c

d Complexity (construction + size of GLC)

2

2

`3

`4

`5

1

`6

• polynomial in the total number of local states; • exponential in the number of local states

1

within one automaton

⇒ efficient with a small number of local states per automaton, whereas a very large number of automata can be handled. L. Paulevé, G. Andrieux, H. Koeppl

8/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Cut Sets Under-Approximation Associate to each node sets of local states intersecting any trace from given context. V : nodes 7→ ℘(℘≤N (Obs)), Obs ⊂ LS ∗ ˜ V(a3 ) = V(a1 →∗a3 )×V(a 2 → a3 ) ∪ {{a3 }}

a3 (OR)

a1

→∗ a

a2 →∗a3

3

a1 →∗a3

2) ˜ V(a1 →∗a3 ) = V(sol 1 )×(sol

(OR)

V(sol 1 ) = V(b1 ) ∪ V(c2 ) (AND)

b1

c2 ∆

˜ 1 , . . . , f m } = {e i ∪ f j | i ∈ [1; n] ∧ j ∈ [1; m]} ; e i , f j ∈ ℘≤N (Obs) {e 1 , . . . , e n }×{f

L. Paulevé, G. Andrieux, H. Koeppl

9/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Cut Sets Under-approximation Example Sketch • Follow the topological order of GLC. • SCCs: arbitrary/random order for updating nodes having child modified. • Always converges. a3

a1 →∗a3 b3

b1

c2

b1 →∗b3

b1 →∗b1

c2 → ∗ c2

d2

L. Paulevé, G. Andrieux, H. Koeppl

d1 →∗d2

c1 →∗c2



10/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Cut Sets Under-approximation Example Sketch • Follow the topological order of GLC. • SCCs: arbitrary/random order for updating nodes having child modified. • Always converges. a3

a1 →∗a3 b3

c2

b1

b1 →∗b3

b1 →∗b1 ∅

d2

L. Paulevé, G. Andrieux, H. Koeppl

d1 →∗d2

c1 →∗c2

c2 → ∗ c2



10/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Cut Sets Under-approximation Example Sketch • Follow the topological order of GLC. • SCCs: arbitrary/random order for updating nodes having child modified. • Always converges. a3

a1 →∗a3 b1 {b1 }

b3

b1 →∗b3

b1 →∗b1 ∅

d2

L. Paulevé, G. Andrieux, H. Koeppl

d1 →∗d2

c2

c1 →∗c2

c2 → ∗ c2



10/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Cut Sets Under-approximation Example Sketch • Follow the topological order of GLC. • SCCs: arbitrary/random order for updating nodes having child modified. • Always converges. a3

a1 →∗a3 b1 {b1 }

b3

b1 →∗b3

{b1 }

d2

L. Paulevé, G. Andrieux, H. Koeppl

d1 →∗d2

b1 →∗b1 ∅

c2

c1 →∗c2

c2 → ∗ c2



10/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Cut Sets Under-approximation Example Sketch • Follow the topological order of GLC. • SCCs: arbitrary/random order for updating nodes having child modified. • Always converges. a3

a1 →∗a3 b1 {b1 }

b3

b1 →∗b3

{b1 }

d2

L. Paulevé, G. Andrieux, H. Koeppl

d1 →∗d2 {b1 }

b1 →∗b1 ∅

c2

c1 →∗c2

c2 → ∗ c2



10/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Cut Sets Under-approximation Example Sketch • Follow the topological order of GLC. • SCCs: arbitrary/random order for updating nodes having child modified. • Always converges. a3

a1 →∗a3 b1 {b1 }

b3

b1 →∗b3

{b1 }

d2

d1 →∗d2 {b1 }

b1 →∗b1 ∅

c2

c1 →∗c2

c2 → ∗ c2



{b1 }, {d2 } L. Paulevé, G. Andrieux, H. Koeppl

10/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Cut Sets Under-approximation Example Sketch • Follow the topological order of GLC. • SCCs: arbitrary/random order for updating nodes having child modified. • Always converges. a3

a1 →∗a3 b1 {b1 }

b3

b1 →∗b3

{b1 }

d2 {b1 }, {d2 }

d1 →∗d2 {b1 }

b1 →∗b1 ∅

c2

c1 →∗c2

c2 → ∗ c2



{b1 }, {d2 }

L. Paulevé, G. Andrieux, H. Koeppl

10/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Cut Sets Under-approximation Example Sketch • Follow the topological order of GLC. • SCCs: arbitrary/random order for updating nodes having child modified. • Always converges. a3

a1 →∗a3 b1 {b1 }

b3

b1 →∗b3 {b1 }, {d2 }

d2 {b1 }, {d2 }

{b1 }

d1 →∗d2 {b1 }

b1 →∗b1 ∅

c2

c1 →∗c2

c2 → ∗ c2



{b1 }, {d2 }

L. Paulevé, G. Andrieux, H. Koeppl

10/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Cut Sets Under-approximation Example Sketch • Follow the topological order of GLC. • SCCs: arbitrary/random order for updating nodes having child modified. • Always converges. a3

a1 →∗a3 b3 {b1 }, {b3 }, {d2 }

b1 →∗b3 {b1 }, {d2 }

d2 {b1 }, {d2 }

b1 {b1 }

{b1 }

d1 →∗d2 {b1 }

b1 →∗b1 ∅

c2

c1 →∗c2

c2 → ∗ c2



{b1 }, {d2 }

L. Paulevé, G. Andrieux, H. Koeppl

10/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Cut Sets Under-approximation Example Sketch • Follow the topological order of GLC. • SCCs: arbitrary/random order for updating nodes having child modified. • Always converges. a3

{b1 }, {b3 }, {d2 }

a1 →∗a3 b3 {b1 }, {b3 }, {d2 }

b1 →∗b3 {b1 }, {d2 }

d2 {b1 }, {d2 }

b1 {b1 }

{b1 }

d1 →∗d2 {b1 }

b1 →∗b1 ∅

c2

c1 →∗c2

c2 → ∗ c2



{b1 }, {d2 }

L. Paulevé, G. Andrieux, H. Koeppl

10/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Cut Sets Under-approximation Example Sketch • Follow the topological order of GLC. • SCCs: arbitrary/random order for updating nodes having child modified. • Always converges. a3

{b1 }, {b3 }, {d2 }

a1 →∗a3 b3 {b1 }, {b3 }, {d2 }

b1 →∗b3 {b1 }, {d2 }

d2 {b1 }, {d2 }

b1 {b1 }

{b1 }

d1 →∗d2 {b1 }

b1 →∗b1 ∅



c1 →∗c2

c2

c2 → ∗ c2



{b1 }, {d2 }

L. Paulevé, G. Andrieux, H. Koeppl

10/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Cut Sets Under-approximation Example Sketch • Follow the topological order of GLC. • SCCs: arbitrary/random order for updating nodes having child modified. • Always converges. a3

{b1 }, {b3 }, {d2 }

a1 →∗a3 b3 {b1 }, {b3 }, {d2 }

b1 →∗b3 {b1 }, {d2 }

d2 {b1 }, {d2 }

b1 {b1 }

{b1 }

d1 →∗d2 {b1 }

b1 →∗b1 ∅



c1 →∗c2

c2

c2 → ∗ c2 ∅



{b1 }, {d2 }

L. Paulevé, G. Andrieux, H. Koeppl

10/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Cut Sets Under-approximation Example Sketch • Follow the topological order of GLC. • SCCs: arbitrary/random order for updating nodes having child modified. • Always converges. a3

{b1 }, {b3 }, {d2 }

a1 →∗a3 b3 {b1 }, {b3 }, {d2 }

b1 {b1 }

c1 →∗c2

c2 {c2 }

b1 →∗b3 {b1 }, {d2 }

d2 {b1 }, {d2 }

{b1 }

d1 →∗d2 {b1 }

b1 →∗b1 ∅



c2 → ∗ c2 ∅



{b1 }, {d2 }

L. Paulevé, G. Andrieux, H. Koeppl

10/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Cut Sets Under-approximation Example Sketch • Follow the topological order of GLC. • SCCs: arbitrary/random order for updating nodes having child modified. • Always converges. a3

{b1 }, {b3 }, {d2 }

a1 →∗a3 b3 {b1 }, {b3 }, {d2 }

{b1 }, {c2 }

b1 {b1 }

c1 →∗c2

c2 {c2 }

b1 →∗b3 {b1 }, {d2 }

d2 {b1 }, {d2 }

{b1 }

d1 →∗d2 {b1 }

b1 →∗b1 ∅



c2 → ∗ c2 ∅



{b1 }, {d2 }

L. Paulevé, G. Andrieux, H. Koeppl

10/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Cut Sets Under-approximation Example Sketch • Follow the topological order of GLC. • SCCs: arbitrary/random order for updating nodes having child modified. • Always converges. a3 {b1 }, {b3 , c2 }, {c2 , d2 }

{b1 }, {b3 }, {d2 }

a1 →∗a3 b3 {b1 }, {b3 }, {d2 }

{b1 }, {c2 }

b1 {b1 }

c1 →∗c2

c2 {c2 }

b1 →∗b3 {b1 }, {d2 }

d2 {b1 }, {d2 }

{b1 }

d1 →∗d2 {b1 }

b1 →∗b1 ∅



c2 → ∗ c2 ∅



{b1 }, {d2 }

L. Paulevé, G. Andrieux, H. Koeppl

10/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Cut Sets Under-approximation Example Sketch • Follow the topological order of GLC. • SCCs: arbitrary/random order for updating nodes having child modified. • Always converges. {a3 }, {b1 }, {b3 , c2 }, {c2 , d2 }

a3 {b1 }, {b3 , c2 }, {c2 , d2 }

{b1 }, {b3 }, {d2 }

a1 →∗a3 b3 {b1 }, {b3 }, {d2 }

{b1 }, {c2 }

b1 {b1 }

c1 →∗c2

c2 {c2 }

b1 →∗b3 {b1 }, {d2 }

d2 {b1 }, {d2 }

{b1 }

d1 →∗d2 {b1 }

b1 →∗b1 ∅



c2 → ∗ c2 ∅



{b1 }, {d2 }

L. Paulevé, G. Andrieux, H. Koeppl

10/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Cut Sets Under-approximation Example Sketch • Follow the topological order of GLC. • SCCs: arbitrary/random order for updating nodes having child modified. • Always converges. {a3 }, {b1 }, {b3 , c2 }, {c2 , d2 }

a3 {a3 }, {b1 }, {b3 , c2 }, {c2 , d2 }

{b1 }, {b3 , c2 }, {c2 , d2 }

{b1 }, {b3 }, {d2 }

a1 →∗a3 b3 {b1 }, {b3 }, {d2 }

{b1 }, {c2 }

b1 {b1 }

c1 →∗c2

c2 {c2 }

b1 →∗b3 {b1 }, {d2 }

d2 {b1 }, {d2 }

{b1 }

d1 →∗d2 {b1 }

b1 →∗b1 ∅



c2 → ∗ c2 ∅



{b1 }, {d2 }

L. Paulevé, G. Andrieux, H. Koeppl

10/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Cut Sets Under-approximation Example Sketch • Follow the topological order of GLC. • SCCs: arbitrary/random order for updating nodes having child modified. • Always converges. {a3 }, {b1 }, {b3 , c2 }, {c2 , d2 }

a3 {a3 }, {b1 }, {b3 , c2 }, {c2 , d2 }

{b1 }, {b3 , c2 }, {c2 , d2 }

{b1 }, {b3 }, {d2 }

a1 →∗a3

{b1 }, {c2 } {a3 }, {b1 }, {b3 , c2 }, {c2 , d2 }

b3 {b1 }, {b3 }, {d2 }

b1 {b1 }

c1 →∗c2

c2 {c2 }

b1 →∗b3 {b1 }, {d2 }

d2 {b1 }, {d2 }

{b1 }

d1 →∗d2 {b1 }

b1 →∗b1 ∅



c2 → ∗ c2 ∅



{b1 }, {d2 }

L. Paulevé, G. Andrieux, H. Koeppl

10/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Formal analysis of the whole PID Pathway Interaction Database http://pid.nci.nih.gov • Inductions, inhibitions, transcriptional regulation, complex formations, . . . • +9,000 interacting components.

Graph of Local Causality for (independent) reachability of active SNAIL, p15, p21 • From Process Hitting model (sub-class of Asynchronous ANs)

+21,000 concurrent automata (biological and logical); largest: 16 local states. • ≈20,000 nodes involving ≈1,600 biological components.

Extracted Cut Sets N 1 2 3 4 5 6

Visited nodes 29,022 36,602 44,174 54,322 68,214 90,902

Exec. time 0.9s 1.6s 5.4s 39s 8.3m 2.6h

SNAIL1 1 +6 +0 +30 +90 +930

p15INK4b1 1 +6 +92 +60 +80 +208

p21CIP11 1 +0 +0 +0 +0 +0

Implemented in PINT http://process.hitting.free.fr (OCaml); Dedicated data structures to efficiently compute cross products between million of sets.

L. Paulevé, G. Andrieux, H. Koeppl

11/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

Discussion

Summary • Cut sets for transient reachability from a set of initial states

⇒ sets of local states necessary for reachability. • Tractable on very large-scale biological networks.

Quality of under-approximation • Graph of Local Causality abstracts a lot of details around synchronisations. • The less sync the AN, the more accurate the cut sets. • Suited for qualitative biological networks.

Future work • Take into account the time scales of interactions. • Cut sets that do not break other dynamical properties. • Cut sets for other dynamical properties.

L. Paulevé, G. Andrieux, H. Koeppl

12/13

Under-approximating Cut Sets for Reachability in Large-Scale Automata Networks

.

Thank you for your attention.

L. Paulevé, G. Andrieux, H. Koeppl

13/13