Slides - UW Math Department

Report 2 Downloads 102 Views
Some 0/1 polytopes need exponential size extended formulations Thomas Rothvoß Department of Mathematics, M.I.T.

0/1 polytopes P

=

conv(X) with X ⊆ {0, 1}n

(1, 1) b

P b

b

(0, 0)

(1, 0)

0/1 polytopes P

=

conv(X) with X ⊆ {0, 1}n → exponential!

(1, 1) b

P b

b

(0, 0)

(1, 0)

0/1 polytopes P

= =

conv(X) with X ⊆ {0, 1}n → exponential! {x ∈ Rn | Ax ≤ b}

(1, 1) b

P b

b

(0, 0)

(1, 0)

0/1 polytopes P

= =

conv(X) with X ⊆ {0, 1}n → exponential! {x ∈ Rn | Ax ≤ b} → exponential!

(1, 1) b

P b

b

(0, 0)

(1, 0)

0/1 polytopes P

= =

conv(X) with X ⊆ {0, 1}n → exponential! {x ∈ Rn | Ax ≤ b} → exponential!

b

b

(0, 0)

P b (1, 0)

(1, 1)

0/1 polytopes P

◮ ◮

= = =

conv(X) with X ⊆ {0, 1}n → exponential! {x ∈ Rn | Ax ≤ b} → exponential! p(Q) → can be polynomial

p : Rn+k → Rn linear projection Q = {(x, y) | Bx + Cy ≤ c} b

b

Q b b b

b b b

(0, 0)

b

P b (1, 0)

(1, 1)

Extension complexity Definition Extension complexity:   Q polyhedron   xc(P ) := min #facets of Q | p linear projection   p(Q) = P b

b

Q b b

p b

b b b

b

P b

Extension complexity Definition Extension complexity:   Q polyhedron   xc(P ) := min #facets of Q | p linear projection   p(Q) = P

If xc(P ) ≤ poly(n) ⇒ (Q, p) compact formulation of P . b

b

Q b b

p b

b b b

b

P b

Example: Parity Polytope P

=

conv{x ∈ {0, 1}n | # ones in x is odd}

(0, 1, 1)

(0, 0, 1) b

(1, 1, 1) b

(1, 0, 1)

(0, 1, 0) b

(1, 1, 0)

b

(0, 0, 0)

(1, 0, 0)

Example: Parity Polytope P

= =

conv{x ∈ {0, 1}n | # ones in x is odd}

{0 ≤ x ≤ 1 | x(A) − x([n]\A) ≤ |A| − 1 ∀A ⊆ [n] : |A| even}

(0, 1, 1)

(0, 0, 1) b

(1, 1, 1) b

(1, 0, 1)

(0, 1, 0) b

(1, 1, 0)

b

(0, 0, 0)

(1, 0, 0)

Example: Parity Polytope P

= =

conv{x ∈ {0, 1}n | # ones in x is odd}

{0 ≤ x ≤ 1 | x(A) − x([n]\A) ≤ |A| − 1 ∀A ⊆ [n] : |A| even}

(0, 1, 1)

1T z k

=

k

0 ≤ zk



1

(k odd)

k(0,= 1 0, 1) b

(1, 1, 1) b

(1, 0, 1)

(0, 1, 0) b

(1, 1, 0)

b

(0, 0, 0)

k=3

(1, 0, 0)

Example: Parity Polytope P

conv{x ∈ {0, 1}n | # ones in x is odd}

= =

{0 ≤ x ≤ 1 | x(A) − x([n]\A) ≤ |A| − 1 ∀A ⊆ [n] : |A| even}

x

=

1T z k

=

0 ≤ zk



X

(0, 1, 1)

zk

k odd

T

k · λk

1 · λk

1 λ

=

1

λ



0

(k odd)

k(0,= 1 0, 1) b

(1, 1, 1) b

(1, 0, 1)

(0, 1, 0) b

(1, 1, 0)

b

(0, 0, 0)

k=3

(1, 0, 0)

What’s known? Compact formulations: ◮ Perfect Matching in planar graphs [Barahona ’93] ◮ Perfect Matching in bounded genus graphs [Gerards ’91] ◮ O(n log n)-size for Permutahedron [Goemans ’10] (→ tight) ◮ nO(1/ε) -size ε-apx for Knapsack Polytope [Bienstock ’08] ◮ ...

What’s known? Compact formulations: ◮ Perfect Matching in planar graphs [Barahona ’93] ◮ Perfect Matching in bounded genus graphs [Gerards ’91] ◮ O(n log n)-size for Permutahedron [Goemans ’10] (→ tight) ◮ nO(1/ε) -size ε-apx for Knapsack Polytope [Bienstock ’08] ◮ ...

Theorem (Yannakakis) No symmetric compact formulation for TSP Polytope and Perfect Matching Polytope.

What’s known? Compact formulations: ◮ Perfect Matching in planar graphs [Barahona ’93] ◮ Perfect Matching in bounded genus graphs [Gerards ’91] ◮ O(n log n)-size for Permutahedron [Goemans ’10] (→ tight) ◮ nO(1/ε) -size ε-apx for Knapsack Polytope [Bienstock ’08] ◮ ...

Theorem (Yannakakis) No symmetric compact formulation for TSP Polytope and Perfect Matching Polytope.

Theorem (Kaibel, Pashkovich & Theis ’10) Compact formulation for log n size matchings, but no symmetric one.

1st Carg` ese Workshop on Combinatorial Optim.

1st Carg` ese Workshop on Combinatorial Optim.

1st Carg` ese Workshop on Combinatorial Optim.

1st Carg` ese Workshop on Combinatorial Optim.

1st Carg` ese Workshop on Combinatorial Optim. Open problem I Does the matching polytope have a compact formulation?

1st Carg` ese Workshop on Combinatorial Optim.

ea !

Open problem I

N

o

id

Does the matching polytope have a compact formulation?

1st Carg` ese Workshop on Combinatorial Optim.

ea !

Open problem I

N

o

id

Does the matching polytope have a compact formulation?

1st Carg` ese Workshop on Combinatorial Optim.

ea !

Open problem I

N

o

id

Does the matching polytope have a compact formulation?

Open problem II (V. Kaibel) Is there any 0/1 polytope without a compact formulation?

1st Carg` ese Workshop on Combinatorial Optim.

ea !

Open problem I

N

o

id

Does the matching polytope have a compact formulation?

Open problem II (V. Kaibel)

Ye s!

Is there any 0/1 polytope without a compact formulation?

Theorem For every n there exists X ⊆ {0, 1}n s.t. xc(conv(X)) ≥ 2n/2·(1−o(1)) .

Proof strategy

X ⊆ {0, 1}n

Proof strategy

X ⊆ {0, 1}n

z   

x | ∃y :

conv(X) }|

A

x+

B

y≤

b

{  

Proof strategy injective map

X ⊆ {0, 1}n

z   

x | ∃y :

conv(X) }|

A

x+

B

y≤

b

{  

Proof strategy injective map

X ⊆ {0, 1}n #0/1 polytopes

z   



x | ∃y :

conv(X) }|

A

x+

B

y≤

# extended form.

b

{  

Proof strategy injective map

X ⊆ {0, 1}n #0/1 polytopes = 22

n

z   



x | ∃y :

conv(X) }|

A

x+

B

y≤

# extended form.

b

{  

Proof strategy

irrational entries injective map

X ⊆ {0, 1}n #0/1 polytopes = 22

n

z   



x | ∃y :

conv(X) }|

A

B

x+ √

2

y≤

# extended form. = ∞

b

{  

Proof strategy

irrational entries

X ⊆ {0, 1}n

n



n’ es Do

22

x | ∃y :

tw or k



#0/1 polytopes =

z  

conv(X) }|

A

!

injective map

B

x+ √

2

y≤

# extended form. = ∞

b

{  

Slack-matrix Write: P = conv({x1 , . . . , xv }) = {x ∈ Rn | Ax ≤ b} {z } | non-redundant # vertices

Slack-matrix

# facets

S Sij

Sij = bi − ATi xj

Slack-matrix Write: P = conv({x1 , . . . , xv }) = {x ∈ Rn | Ax ≤ b} {z } | non-redundant # vertices vertex j

# facets

facet i

S

Slack-matrix

Sij

Sij = bi − ATi xj

Slack-matrix Write: P = conv({x1 , . . . , xv }) = {x ∈ Rn | Ax ≤ b} {z } | non-redundant # vertices

r r

# facets

U ≥ 0

V ≥0

S

Slack-matrix

Sij

Sij = bi − ATi xj

Non-negative rank: ×r r×v : S = UV } , V ∈ R≥0 rk+ (S) = min{r | ∃U ∈ Rf≥0

Example for slack-matrix

(1, 1) x1 − x2 ≥ 0 (0, 0)

P

x2 ≥ 0

2x1 ≤ 2 (1, 0)

0 1 0 2 0 0 0 0 1

S

Yannakakis’ Theorem Theorem (Yannakakis ’91) Let S be slackmatrix for P : ◮

xc(P ) = rk+ (S).



For any non-neg. factorization S = U V : P = {x ∈ Rn | ∃y ≥ 0 : Ax + U y = b}

Yannakakis’ Theorem Theorem (Yannakakis ’91) Let S be slackmatrix for P : ◮

xc(P ) = rk+ (S).



For any non-neg. factorization S = U V : P = {x ∈ Rn | ∃y ≥ 0 : Ax + U y = b}



For vertex xj : Ai xj + Ui V j = bi .

Yannakakis’ Theorem Theorem (Yannakakis ’91) Let S be slackmatrix for P : ◮

xc(P ) = rk+ (S).



For any non-neg. factorization S = U V : P = {x ∈ Rn | ∃y ≥ 0 : Ax + U y = b}

◮ ◮

For vertex xj : Ai xj + Ui V j = bi . Ai x > bi =⇒ Ai x + Ui y > bi . |{z} ≥0

Yannakakis’ Theorem Theorem (Yannakakis ’91) Let S be slackmatrix for P : ◮

xc(P ) = rk+ (S).



For any non-neg. factorization S = U V : P = {x ∈ Rn | ∃y ≥ 0 : Ax + U y = b}

◮ ◮

For vertex xj : Ai xj + Ui V j = bi . Ai x > bi =⇒ Ai x + Ui y > bi . |{z} ≥0



“≥” follows from an application of duality.

Controlling the coefficients Fix X ⊆ {0, 1}n , P := conv(X) = {x ∈ Rn | Ax ≤ b} and Slack-matrix S = U V Valid assumption: ◮ A, b integral with kAk∞ , kbk∞ ≤ 2n log(2n) ◮

Controlling the coefficients Fix X ⊆ {0, 1}n , P := conv(X) = {x ∈ Rn | Ax ≤ b} and Slack-matrix S = U V Valid assumption: ◮ A, b integral with kAk∞ , kbk∞ ≤ 2n log(2n) ◮ xc(P ) ≤ 2n . ◮

Controlling the coefficients Fix X ⊆ {0, 1}n , P := conv(X) = {x ∈ Rn | Ax ≤ b} and Slack-matrix S = U V Valid assumption: ◮ A, b integral with kAk∞ , kbk∞ ≤ 2n log(2n) ◮ xc(P ) ≤ 2n . 2 ◮ |Sij | = |bi − Ai xj | ≤ (n + 1) · 2n log(2n) ≤ 2n ◮

Controlling the coefficients Fix X ⊆ {0, 1}n , P := conv(X) = {x ∈ Rn | Ax ≤ b} and Slack-matrix S = U V Valid assumption: ◮ A, b integral with kAk∞ , kbk∞ ≤ 2n log(2n) ◮ xc(P ) ≤ 2n . 2 ◮ |Sij | = |bi − Ai xj | ≤ (n + 1) · 2n log(2n) ≤ 2n 2 ◮ kU k∞ , kV k∞ ≤ 2n ◮

V U

S

Slack-matrix

Controlling the coefficients Fix X ⊆ {0, 1}n , P := conv(X) = {x ∈ Rn | Ax ≤ b} and Slack-matrix S = U V Valid assumption: ◮ A, b integral with kAk∞ , kbk∞ ≤ 2n log(2n) ◮ xc(P ) ≤ 2n . 2 ◮ |Sij | = |bi − Ai xj | ≤ (n + 1) · 2n log(2n) ≤ 2n 2 ◮ kU k∞ , kV k∞ ≤ 2n ◮



Scale s.t. kU ℓ k∞ = kVℓ k∞ .

V U col ℓ

row ℓ

S

Slack-matrix

Controlling the coefficients Fix X ⊆ {0, 1}n , P := conv(X) = {x ∈ Rn | Ax ≤ b} and Slack-matrix S = U V Valid assumption: ◮ A, b integral with kAk∞ , kbk∞ ≤ 2n log(2n) ◮ xc(P ) ≤ 2n . 2 ◮ |Sij | = |bi − Ai xj | ≤ (n + 1) · 2n log(2n) ≤ 2n 2 ◮ kU k∞ , kV k∞ ≤ 2n ◮

◮ ◮

Scale s.t. kU ℓ k∞ = kVℓ k∞ . But kSk∞ ≥ kU ℓ k∞ · kVℓ k∞

largest entry in row/col

U col ℓ

V

row ℓ

S

Slack-matrix

≤ 2n

2

Rounding entries b b

Q b

b b

b

b

X=

(

x∈

{0, 1}n

| ∃0 ≤ y ≤ ∞ :

A

·x+

b

P

U b ·y =

b

)

b

Rounding entries b b

Q b

b b

b

b

X=

(

x∈

{0, 1}n

| ∃0 ≤ y ≤

2 2n

:

A

·x+

b

P

U b ·y =

b

)

b

Rounding entries b b

Pick rows I max. | det([AI , UI ])|



Q b

b b

b

b

X=

(

x∈

{0, 1}n

| ∃0 ≤ y ≤

2 2n

:

A

·x+

b

P

U b ·y =

b

)

b

Rounding entries b b

Pick rows I max. | det([AI , UI ])|



Q b

b b

b

b

X=

(

x∈

{0, 1}n

| ∃0 ≤ y ≤

2 2n

:

A

·x+

b

P

U b ·y =



2

b

)

b

Rounding entries b b

Q

Pick rows I max. | det([AI , UI ])|



Round Uij → Uij′ ∈ Z · ( 12 )n



b

3

b

b

b

b

X=

(

x∈

{0, 1}n

| ∃0 ≤ y ≤

2 2n

:

A

·x+

b b

P

U b ·y =

1.41

b

b

)

b

b

Rounding entries b b

Pick rows I max. | det([AI , UI ])|



Round Uij →



Uij′

∈Z

Q b

3 · ( 12 )n

b b

b b b b b

X=

(

x∈

{0, 1}n

| ∃0 ≤ y ≤

2 2n

:

A

·x+

b

P

U b ·y =

b

±

b

1

2n2

)

Rounding entries b b

Pick rows I max. | det([AI , UI ])|



Round Uij →



Uij′

∈Z

b

3 · ( 12 )n

b b

Consider vertex x ∈ X: rounding error 2 ≤ kU − U ′ k∞ · kyk1 ≤ . . . ≤ ( 12 )n



b b

X=

x∈

{0, 1}n

| ∃0 ≤ y ≤

2 2n

:

A

·x+

b b

b

(

Q

b

x

P

U b ·y =

b

±

b

1

2n2

)

Rounding entries b

Consider x ∈ / X.



b

Q b

b b

xb b

X=

(

x∈

{0, 1}n

| ∃0 ≤ y ≤

2 2n

:

A

·x+

b

b b b b

P

U b ·y =

b

±

b

1

2n2

)

Rounding entries b

Consider x ∈ / X.



b

Q

∃ violated constraint: Aℓ x ≥ bℓ + 1



b b b

xb b

b

b b b b

P b

b

Aℓ x ≤ bℓ

ℓ X=

(

x∈

{0, 1}n

| ∃0 ≤ y ≤

2 2n

:

A

·x+

U b ·y =

±

1

2n2

)

Rounding entries b

Consider x ∈ / X.



b

Q

∃ violated constraint: Aℓ x ≥ bℓ + 1



(Aℓ , Uℓ ) =



P

i∈I

det



det







b b

(Ai , Ui )

b

xb b

b

b b b b

P b

b

Aℓ x ≤ bℓ

ℓ X=

(

x∈

{0, 1}n

| ∃0 ≤ y ≤

2 2n

:

A

·x+

U b ·y =

±

1

2n2

)

Rounding entries b

Consider x ∈ / X.



b

∃ violated constraint: Aℓ x ≥ bℓ + 1 P (Aℓ , Uℓ ) = i∈I [−1, 1]· (Ai , Ui )

◮ ◮

Q b

b b

xb b

b

b b b b

P b

b

Aℓ x ≤ bℓ

ℓ X=

(

x∈

{0, 1}n

| ∃0 ≤ y ≤

2 2n

:

A

·x+

U b ·y =

±

1

2n2

)

Rounding entries b

Consider x ∈ / X.



b

∃ violated constraint: Aℓ x ≥ bℓ + 1 P ◮ (Aℓ , Uℓ ) = i∈I [−1, 1]· (Ai , Ui ) P ◮ violation in ℓ ≤ i∈I violation in i : X |Ai x + Ui y − bi | 1 ≤ |Aℓ x + Uℓ y − b| ≤

Q



b b b

xb

i∈I

b

b

b b b b

P b

b

Aℓ x ≤ bℓ

ℓ X=

(

x∈

{0, 1}n

| ∃0 ≤ y ≤

2 2n

:

A

·x+

U b ·y =

±

1

2n2

)

Rounding entries b

Consider x ∈ / X.



b

∃ violated constraint: Aℓ x ≥ bℓ + 1 P ◮ (Aℓ , Uℓ ) = i∈I [−1, 1]· (Ai , Ui ) P ◮ violation in ℓ ≤ i∈I violation in i : X |Ai x + Ui y − bi | 1 ≤ |Aℓ x + Uℓ y − b| ≤

Q



b b b

xb

i∈I

One i ∈ I violated by 1 1 n2 ′ |I| − kU − U k∞ · kyk1 ≫ ( 2 ) ⇒ x not feasible!



b

b

b b b b

P b

b

Aℓ x ≤ bℓ

ℓ X=

(

x∈

{0, 1}n

| ∃0 ≤ y ≤

2 2n

:

A

·x+

U b ·y =

±

1

2n2

)

Conclusion



Let R :=

max {xc(conv(X))}.

X⊆{0,1}n

Conclusion

b b

RR

Q b

b



Let R :=

max {xc(conv(X))}.

X⊆{0,1}n

X ⊆ {0, 1}n

b

b b

A U ′b

b

b

P bb

b

b

Rn

Conclusion

b b

RR

Q b

b



Let R :=

max {xc(conv(X))}.

X⊆{0,1}n

injective X ⊆ {0, 1}n

b

b b

A U ′b

b

b

P bb

b

b

Rn

Conclusion

b b

RR

Q b

b



Let R :=

max {xc(conv(X))}.

X⊆{0,1}n

injective X ⊆ {0, 1}n

22

n



b

b b

A U ′b

b

b

P bb

b

b

Rn

Conclusion

b b

RR

Q b

b



Let R :=

max {xc(conv(X))}.

b

X⊆{0,1}n

b

n

injective X ⊆ {0, 1}n

22

n



b

b

b

P bb

R

A U ′b

n+R

b

b

Rn

Conclusion

b b

RR

Q b

b



Let R :=

max {xc(conv(X))}.

b

X⊆{0,1}n

b

n

injective X ⊆ {0, 1}n

b

b

b

P bb

R

A U ′b

n+R

poly(n) bits

22

n



b

b

Rn

Conclusion

b b

RR

Q b

b



Let R :=

max {xc(conv(X))}.

b

X⊆{0,1}n

b

n

injective X ⊆ {0, 1}n

b

b

b

P bb

R

A U ′b

n+R

poly(n) bits

22

n



2poly(n)·R

2

b

b

Rn

Conclusion

b b

RR

Q b

b



Let R :=

max {xc(conv(X))}.

b

X⊆{0,1}n

b

n

injective X ⊆ {0, 1}n

b

b

b

P bb

R

A U ′b

n+R

poly(n) bits

22

n

≤ ⇒ R ≥ 2n/2·(1−o(1))

2poly(n)·R

2

b

b

Rn

Conclusion

b b

RR

Q b

b



Let R :=

max {xc(conv(X))}.

b

X⊆{0,1}n

b

n

injective X ⊆ {0, 1}n

b

b

b

P bb

R

A U ′b

n+R

poly(n) bits

22

n



2poly(n)·R

2

⇒ ∃X ⊆ {0, : xc(conv(X)) ⇒1} Rn ≥ 2n/2·(1−o(1)) ≥ 2n/2·(1−o(1))

b

b

Rn

Consequences for matroids ◮

Fact: There are 22 [Duke ’03].

n /poly(n)

many matroids on n elements

Consequences for matroids ◮

Fact: There are 22 [Duke ’03].

n /poly(n)

many matroids on n elements

Theorem For every n there exists a matroid M = ([n], I) such that xc(conv(χ(I)) ≥ 2n/2·(1−o(1)) .

Consequences for TSP Theorem (Folkore) NP 6⊆ P/poly ⇒ no compact formulation for PT SP = conv{χ(C) | C is Hamiltonian in complete graph} with polynomially encodable coefficients.

Consequences for TSP Theorem NP 6⊆ P/poly ⇒ no compact formulation for PT SP = conv{χ(C) | C is Hamiltonian in complete graph} with polynomially encodable coefficients. Rxc(P )

P

Rn

Consequences for TSP Theorem NP 6⊆ P/poly ⇒ no compact formulation for PT SP = conv{χ(C) | C is Hamiltonian in complete graph} with polynomially encodable coefficients. b

Given instance G = (V, E) for Hamiltonian Cycle. Optimize ( 1 e∈E ce := 0 otherwise

b

Rxc(P )

Q b

b b

b b

over rounded polytope. b

P

b

Rn b

projx (Q)

Consequences for TSP Theorem NP 6⊆ P/poly ⇒ no compact formulation for PT SP = conv{χ(C) | C is Hamiltonian in complete graph} with polynomially encodable coefficients. b

Given instance G = (V, E) for Hamiltonian Cycle. Optimize ( 1 e∈E ce := 0 otherwise

b b

b b b



∃HC ⇒ OP T ≥ n NO HC ⇒ OP T ≤ n − 1 + εn ≤ n −

Q

b

over rounded polytope. ◮

b

Rxc(P )

1 2

P

b

Rn b

P + ε projx (Q)

Open problems Open Problem Can one prove a super-polynomial lower bound for any explicit 0/1 polytope???

Open problems Open Problem Can one prove a super-polynomial lower bound for any explicit 0/1 polytope???

Thanks for your attention