Solving a System of Quadratic Inequalities by Graphing

Report 7 Downloads 117 Views
www.iTutoring.com  -­‐  NOTES  

 

 

 

 

 

 

Solving  a  System  of  Quadratic  Inequalities    by  Graphing  

Name    _________________________________   Date  ___________________      Period  _______  

     

Standard form of a quadratic y = ax2 + bx + c y > ax2 + bx + c

y < ax2 + bx + c

y ≥ ax2 + bx + c

y ≤ ax2 + bx + c

Quadratic Inequality y > a(x – h)2 + k

y ≤ a(x – p)(x – q)  

       

Rules for graphing quadratic inequalities... Graph the boundary parabola y = ax2 + bx + c Solid line or dotted line y < or y > ! dotted line y ≤ or y ≥ ! solid line

Shade above or below parabola y > or y ≥ ! shade above parabola y < or y ≤ ! shade below parabola

The shaded region represents all (x,y) coordinates that will make the inequality a true statement.

       

 

   

Solve the following system y > x2 – 4x – 4

y < -x2 + 4x + 4

 

           

Solve the following system y ≤ -2x2 – 8x – 6

       

y ≥ x2 + 2x – 4

 

© iTutoring.com Solving  a  System  of  Quadratic  Inequalities  by  Graphing     Pg.  2  

   

Solve the following system y ≥ -(x – 4)2 + 1

y ≤ 2(x + 5)2 – 3

 

           

Solve the following system y > (x – 5)(x + 1)

       

y < (x – 3)(x – 1)

 

© iTutoring.com Solving  a  System  of  Quadratic  Inequalities  by  Graphing     Pg.  3  

   

Rules for graphing quadratic inequalities... y > ax2 + bx + c y ≥ ax2 + bx + c

y < ax2 + bx + c y ≤ ax2 + bx + c

Graph the boundary parabola y = ax2 + bx + c Solid line or dotted line y < or y > ! dotted line y ≤ or y ≥ ! solid line

               

Shade above or below parabola y > or y ≥ ! shade above parabola y < or y ≤ ! shade below parabola

Vertex Form

Intercept Form

y > a(x – h)2 + k

y ≤ a(x – p)(x – q)  

© iTutoring.com Solving  a  System  of  Quadratic  Inequalities  by  Graphing     Pg.  4