Some inequalities for the q-beta and the q-gamma ... - Semantic Scholar

Report 5 Downloads 48 Views
Applied Mathematics and Computation 204 (2008) 385–394

Contents lists available at ScienceDirect

Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc

Some inequalities for the q-beta and the q-gamma functions via some q-integral inequalities Ahmed Fitouhi a,*, Kamel Brahim b a b

Faculté des Sciences de Tunis, Campus Universitaire Tunis, El Menzah, 1060 Tunis, Tunisia Institut Préparatoire aux Études d’Ingénieur de Tunis, Tunisia

a r t i c l e

i n f o

a b s t r a c t Some new inequalities for the q-gamma, the q-beta and the q-analogue of the Psi functions are established via some q-integral inequalities. Ó 2008 Elsevier Inc. All rights reserved.

Keywords: q-Integral q-Gamma q-Beta

1. Introduction In classical analysis, integral inequalities have been well-developed and leading to a wide variety of applications in mathematics and physics (see [11–13] and references therein). In a survey paper [4], Dragomir et al. used certain clever integral inequalities to provide some interesting inequalities for the Euler’s beta and gamma functions. Interested by this type of inequalities, Agarwal et al. gave in [1] some improvements and generalizations of some of the Dragomir’s ones. In quantum-calculus, in spite of the natural difficulties, coming from the definition of the q-Jackson integral, the interest in the q-integral inequalities has grown in the last few years (see [2,6,14]). It is within this framework that this paper presents itself. The main object is provide some new q-integral inequalities and, as applications, we establish some inequalities for the q-beta and the q-gamma functions. This paper is organized as follows: in Section 2, we present some standard conventional notations and notions which will be used in the sequel. In Section 3, we state q-analogues of the Cebysev’s integral inequalities for synchronous (asynchronous) mappings and as a direct consequence, we give some inequalities involving the q-beta and the q-gamma functions. In Section 4, we establish some inequalities for these functions via q-Hölder’s integral inequality. Section 5 is devoted to some applications of the q-Grüss’ integral inequality. Finally, Section 6 shows a q-analogue of a Cebysev’s type inequality and gives some related applications for the q-beta and the q-gamma functions. 2. Notations and preliminaries For the convenience of the reader, we provide in this section a summary of the mathematical notations and definitions used in this paper. All of these results can be found in [5,8] or [9]. Throughout this paper, we will fix q 20; 1½. For a 2 C, we write

½aq ¼

1  qa ; 1q

ða; qÞn ¼

½nq ! ¼ ½1q ½2q . . . ½nq ;

n1 Y

ð1  aqk Þ;

n ¼ 1; 2; . . . ; 1;

k¼0

n 2 N:

* Corresponding author. E-mail addresses: [email protected] (A. Fitouhi), [email protected] (K. Brahim). 0096-3003/$ - see front matter Ó 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2008.06.055

386

A. Fitouhi, K. Brahim / Applied Mathematics and Computation 204 (2008) 385–394

The q-derivative Dq f of a function f is given by

f ðxÞ  f ðqxÞ ; ð1  qÞx

ðDq f ÞðxÞ ¼

if x 6¼ 0;

ð1Þ

and ðDq f Þð0Þ ¼ f 0 ð0Þ provided f 0 ð0Þ exists. The q-Jackson integrals from 0 to b and from 0 to 1 are defined by (see [7])

Z

b

f ðxÞdq x ¼ ð1  qÞb

0

1 X

f ðbq Þqn

n

ð2Þ

f ðqn Þqn ;

ð3Þ

n¼0

and

Z

1

f ðxÞdq x ¼ ð1  qÞ

0

1 X n¼1

provided the sums converge absolutely. The q-Jackson integral in a generic interval ½a; b is given by (see [7])

Z

b

f ðxÞdq x ¼

Z

a

b

f ðxÞdq x 

0

Z

a

f ðxÞdq x:

ð4Þ

0

We denote by I one of the following sets:

Rq;þ ¼ fqn : n 2 Zg;

ð5Þ

n

½0; bq ¼ fbq : n 2 Ng;

b > 0;

k

½a; bq ¼ fbq : 0 6 k 6 ng;

ð6Þ

b > 0;

n

a ¼ bq ;

n 2 N;

ð7Þ

R

and we note I f ðxÞdq x the q-integral of f on the correspondent I. We recall the two q-analogues of the exponential function (see [5,15]) given by

Ezq ¼0 u0 ð; ; q; ð1  qÞzÞ ¼

1 X

q

nðn1Þ 2

n¼0

zn ¼ ðð1  qÞz; qÞ1 ½nq !

ð8Þ

and

ezq ¼1 u0 ð0; ; q; ð1  qÞzÞ ¼

1 X zn 1 : ¼ ðð1  qÞz; qÞ1 ½n ! q n¼0

ð9Þ

z z z z These q-exponential functions satisfy the following relations: Dq ezq ¼ ezq , Dq Ezq ¼ Eqz q and Eq eq ¼ eq Eq ¼ 1. The q-gamma function is defined by [7]

Cq ðxÞ ¼

ðq; qÞ1 ð1  qÞ1x ; ðqx ; qÞ1

x 6¼ 0; 1; 2; . . . ;

ð10Þ

it satisfies the following functional equation:

Cq ðx þ 1Þ ¼ ½xq Cq ðxÞ;

Cq ð1Þ ¼ 1;

ð11Þ

and having the following q-integral representation (see [9])

Cq ðxÞ ¼

Z

1 1q

0

t x1 Eqt q dq t;

x > 0:

ð12Þ

The previous q-integral representation, give that Cq is an infinitely differentiable function on 0; þ1½ and

CqðkÞ ðxÞ ¼

Z

1 1q

0

t x1 ðln tÞk Eqt q dq t;

x > 0;

k 2 N:

ð13Þ

The q-beta function is defined by (see [9])

Bq ðt; sÞ ¼

Z 0

1

xt1

ðxq; qÞ1 dq x; ðxqs ; qÞ1

s > 0;

t > 0:

ð14Þ

It satisfies

Bq ðt; sÞ ¼

Cq ðtÞCq ðsÞ ; Cq ðt þ sÞ

s > 0;

t > 0:

ð15Þ

A. Fitouhi, K. Brahim / Applied Mathematics and Computation 204 (2008) 385–394

387

3. q-Cebysev’s integral inequality and applications This section is devoted to state a q-analogue of the classical Cebysev’s integral inequality for synchronous (asynchronous) mappings and to give some related applications for the q-beta and the q-gamma functions. Definition 1. Let f and g be two functions defined on I. The functions f and g are said q-synchronous (q-asynchronous) on I if

ðf ðxÞ  f ðyÞÞðgðxÞ  gðyÞÞ P ð6Þ0 8x; y 2 I:

ð16Þ

Note that if f and g are both q-increasing or q-decreasing on I then they are q-synchronous on I. We begin by state the q-analogue of the Cebysev’s integral inequality. Proposition 1. Let f, g and h be three functions defined on I such that: (1) hðxÞ P 0; x 2 I, (2) f and g are q-synchronous (q-asynchronous) on I. Then

Z

hðxÞdq x

Z

I

hðxÞf ðxÞgðxÞdq x P ð6Þ

I

Z

hðxÞf ðxÞdq x

Z

I

hðxÞgðxÞdq x:

ð17Þ

I

Proof. We have

Z

hðxÞdq x

Z

I

hðxÞf ðxÞgðxÞdq x 

Z

I

hðxÞf ðxÞdq x

I

Z

hðxÞgðxÞdq x ¼ 1=2

I

Z Z I

hðxÞhðyÞ½f ðxÞ  f ðyÞ½gðxÞ  gðyÞdq xdq y

I

So, the result follows from the conditions (1) and (2). h The following theorem is a direct consequence of the previous proposition. Theorem 1. Let m, n, p and p0 be some positive reals such that

ðp  mÞðp0  nÞ 6 ðPÞ0: Then

Bq ðp; p0 ÞBq ðm; nÞ P ð6ÞBq ðp; nÞBq ðm; p0 Þ

ð18Þ

Cq ðp þ nÞCq ðp0 þ mÞ P ð6ÞCq ðp þ p0 ÞCq ðm þ nÞ:

ð19Þ

and

Proof. Fix m, n, p and p0 in 0; þ1½, satisfying the condition of the theorem and the functions f, g and h on ½0; 1q by

f ðxÞ ¼ xpm ;

gðxÞ ¼

ðxqn ; qÞ1 ðxqp0 ; qÞ1

ðxq; qÞ1 : ðxqn ; qÞ1

and hðxÞ ¼ xm1

ð20Þ

From the conditions

Dq f ðxÞ ¼ ½p  mq xpm1

ð21Þ

and 0

Dq gðxÞ ¼ qp ½n  p0 q

ðxqnþ1 ; qÞ1 ; ðxqp0 ; qÞ1

ð22Þ

one can see that f and g are q-synchronous (q-asynchronous) on ½0; 1q . So, by using Proposition 1, we obtain

Z

1

hðxÞdq x

0

Z

1

hðxÞf ðxÞgðxÞdq x P ð6Þ 0

Z

1

hðxÞf ðxÞdq x 0

Z

1

hðxÞgðxÞdq x:

ð23Þ

0

Thus,

Z 0

1

xm1

ðxq; qÞ1 dq x ðxqn ; qÞ1

Z 0

1

xp1

ðxq; qÞ1 dq x P ð6Þ ðxqp0 ; qÞ1

Z 0

1

xp1

ðxq; qÞ1 dq x ðxqn ; qÞ1

Z 0

1

xm1

ðxq; qÞ1 dq x; ðxqp0 ; qÞ1

ð24Þ

388

A. Fitouhi, K. Brahim / Applied Mathematics and Computation 204 (2008) 385–394

which implies that

Bq ðm; nÞBq ðp; p0 Þ P ð6ÞBq ðp; nÞBq ðm; p0 Þ:

ð25Þ

Now, according to the relations (15) and (18), we obtain

Cq ðmÞCq ðnÞ Cq ðpÞCq ðp0 Þ Cq ðpÞCq ðnÞ Cq ðmÞCq ðp0 Þ P ð6Þ : 0 Cq ðm þ nÞ Cq ðp þ p Þ Cq ðp þ nÞ Cq ðm þ p0 Þ

ð26Þ

Therefore,

Cq ðp þ nÞCq ðp0 þ mÞ P ð6ÞCq ðp þ p0 ÞCq ðm þ nÞ: 

ð27Þ

Corollary 1. For all p; m > 0, we have

Bq ðp; mÞ P ½Bq ðp; pÞBq ðm; mÞ1=2

ð28Þ

Cq ðp þ mÞ 6 ½Cq ð2pÞCq ð2mÞ1=2 :

ð29Þ

and

Proof. A direct application of Theorem 1, with p0 ¼ p and n ¼ m, gives the results.

h

Corollary 2. For all u; v > 0, we have

Cq

u þ v qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 6 Cq ðuÞCq ðvÞ: 2

ð30Þ

Proof. The inequality follows from (29), by taking p ¼ u2 and m ¼ 2v. h Theorem 2. Let m, p and k be real numbers satisfying m; p > 0 and p > k > m and let n be a nonnegative integer. If

kðp  m  kÞ P ð6Þ0

ð31Þ

ð2nÞ ð2nÞ Cqð2nÞ ðpÞCð2nÞ q ðmÞ P ð6ÞCq ðp  kÞCq ðm þ kÞ:

ð32Þ

then

1 Proof. Let f, g and h be the functions defined on I ¼ ½0; 1q q by

f ðxÞ ¼ xpmk ;

2n and hðxÞ ¼ xm1 Eqx q ðln xÞ :

gðxÞ ¼ xk

We have

Dq f ðxÞ ¼ ½p  m  kq xpmk1

and Dq gðxÞ ¼ ½kq xk1 :

If the condition (31) holds, one can show that the functions f and g are q-synchronous (q-asynchronous) on I and Proposition 1 gives

Z

1 1q

0

2n xm1 Eqx q ðln xÞ dq x

ð6Þ

Z

1 1q

0

Z

1 1q

0

2n xpmk xk xm1 Eqx q ðln xÞ dq x P

2n xpmk xm1 Eqx q ðln xÞ dq x

Z 0

1 1q

2n xk xm1 Eqx q ðln xÞ dq x;

which is equivalent to

Z 0

1 1q

2n xm1 Eqx q ðln xÞ dq x

Z

1 1q

0

2n xp1 Eqx q ðln xÞ dq x P ð6Þ

Z 0

1 1q

2n xpk1 Eqx q ðln xÞ dq x

Z 0

1 1q

2n xkþm1 Eqx q ðln xÞ dq x:

Hence, the relation (13) completes the proof. h Taking n ¼ 0 in the previous theorem, we obtain the following result. Corollary 3. Let m, p and k be some real numbers under the conditions of Theorem 2, we have

Cq ðpÞCq ðmÞ P ð6ÞCq ðp  kÞCq ðm þ kÞ

ð33Þ

A. Fitouhi, K. Brahim / Applied Mathematics and Computation 204 (2008) 385–394

389

and

Bq ðp; mÞ P ð6ÞBq ðp  k; m þ kÞ:

ð34Þ

Corollary 4. Let n be a nonnegative integer, p > 0 and p0 2 R such that j p0 j< p. Then 0 ½Cqð2nÞ ðpÞ2 6 Cqð2nÞ ðp  p0 ÞCð2nÞ q ðp þ p Þ:

ð35Þ

Proof. By choosing m ¼ p and k ¼ p0 , we obtain

kðp  m  kÞ ¼ ðp0 Þ2 6 0 and the result turns out from Theorem 2. h Taking in the previous result p ¼ uþv and p0 ¼ uv , we obtain the following result: 2 2 Corollary 5. Let u; v be two positive real numbers and n be a nonnegative integer. Then

Cð2nÞ q

u þ v 2

6

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð2nÞ Cð2nÞ q ðuÞCq ðvÞ:

ð36Þ

Corollary 6. Let p > 0 and p0 2 R such that j p0 j< p. Then

C2q ðpÞ 6 Cq ðp  p0 ÞCq ðp þ p0 Þ

ð37Þ

Bq ðp; pÞ 6 Bq ðp  p0 ; p þ p0 Þ:

ð38Þ

and

Proof. For n ¼ 0, the inequality (35) becomes

C2q ðpÞ 6 Cq ðp  p0 ÞCq ðp þ p0 Þ: The inequality (38) follows from (15). h Now, let us recall the definition (see [4]). Definition 2. The positive real numbers a and b may be called similarly (oppositely) unitary if

ða  1Þðb  1Þ P ð6Þ0: Now, we shall prove the following result: Theorem 3. If a; b > 0 be similarly (oppositely) unitary and n a nonnegative integer. Then ð2nÞ ð2nÞ ð2nÞ Cð2nÞ q ð2ÞCq ða þ bÞ P ð6ÞCq ða þ 1ÞCq ðb þ 1Þ:

ð39Þ

Proof. In Theorem 2, set m ¼ 2, p ¼ a þ b and k ¼ b  1. The condition (31) becomes

kðp  m  kÞ ¼ ða  1Þðb  1Þ P ð6Þ0:

ð40Þ

ð2nÞ ð2nÞ ð2nÞ Cð2nÞ  q ð2ÞCq ða þ bÞ P ð6ÞCq ða þ 1ÞCq ðb þ 1Þ:

ð41Þ

So,

Corollary 7. If a; b > 0 and be similarly (oppositely) unitary. Then

Cq ða þ bÞ P ð6Þ½aq ½bq Cq ðaÞCq ðbÞ

ð42Þ

and

Bq ða; bÞ 6 ðPÞ

1 : ½aq ½bq

ð43Þ

Proof. The inequality (42) follows from the previous theorem by taking n ¼ 0 and using the facts that Cq ð2Þ ¼ 1, Cq ða þ 1Þ ¼ ½aq Cq ðaÞ and Cq ðb þ 1Þ ¼ ½bq Cq ðbÞ. Eq. (15) together with Eq. (42) gives Eq. (43). h

390

A. Fitouhi, K. Brahim / Applied Mathematics and Computation 204 (2008) 385–394

Corollary 8. The function ln Cq is superadditive for x > 1, in the sense that

ln Cq ða þ bÞ P ln Cq ðaÞ þ ln Cq ðbÞ: Proof. For all a; b P 1, we have

ln Cq ða þ bÞ P ln½aq þ ln½bq þ ln Cq ðaÞ þ ln Cq ðbÞ P ln Cq ðaÞ þ ln Cq ðbÞ; which completes the proof.

h

Corollary 9. For a P 1 and n ¼ 1; 2; . . ., we have

Cq ðnaÞ P ½n  1qa !½aq2n1 ½Cq ðaÞn :

ð44Þ

Proof. We proceed by induction on n. It is clear that the inequality is true for n ¼ 1. Suppose that Eq. (44) holds for an integer n P 1 and let us prove it for n þ 1. By Eq. (42), we have

Cq ððn þ 1ÞaÞ ¼ Cq ðna þ aÞ P ½naq ½aq Cq ðnaÞCq ðaÞ

ð45Þ

and by hypothesis, we have

Cq ðnaÞ P ½n  1qa !½aq2n1 ½Cq ðaÞn :

ð46Þ

The use of the fact that ½naq ¼ ½nqa ½aq , gives nþ1 Cq ððn þ 1ÞaÞ P ½naq ½aq ½n  1qa !½a2n1 ½Cq ðaÞn Cq ðaÞ P ½nqa !½a2n : q q ½Cq ðaÞ

The inequality (44) is then true for n þ 1. h For a given real m > 0 and a nonnegative integer n, consider the mapping

Cq;m;n ðxÞ ¼

Cqð2nÞ ðx þ mÞ Cqð2nÞ ðmÞ

:

We have the following result. Corollary 10. The mapping Cq;m;n ð:Þ is supermultiplicative on ½0; 1Þ, in the sense

Cq;m;n ðx þ yÞ P Cq;m;n ðxÞCq;m;n ðyÞ: Proof. Fix x; y in ½0; 1Þ and put p ¼ x þ y þ m and k ¼ y. We have

yðx þ y þ m  m  yÞ ¼ xy P 0: So, the previous theorem leads to

Cqð2nÞ ðmÞCqð2nÞ ðx þ y þ mÞ P Cqð2nÞ ðx þ mÞCð2nÞ q ðy þ mÞ;

ð47Þ

which is equivalent to

Cq;m;n ðx þ yÞ P Cq;m;n ðxÞCq;m;n ðyÞ:

ð48Þ

This achieves the proof. h

4. Inequalities via the q-Hölder’s one We begin this section by recalling the q-analogue of the q-Hölder’s integral inequality proved in [2]. Lemma 1. Let p and p0 be two positive reals satisfying 1p þ p10 ¼ 1, and f and g be two functions defined on I. Then

Z  Z 1p Z  10 p   p p0  f ðxÞgðxÞdq x 6 jf ðxÞj d x jgðxÞj d x : q q   I

I

I

Owing this lemma, one can establish some new inequalities involving the q-gamma and q-beta functions.

ð49Þ

391

A. Fitouhi, K. Brahim / Applied Mathematics and Computation 204 (2008) 385–394

Theorem 4. Let n be a nonnegative integer, x; y be two positive real numbers and a; b be two nonnegative real numbers such that a þ b ¼ 1. Then a b ð2nÞ ð2nÞ Cð2nÞ q ðax þ byÞ 6 ½Cq ðxÞ ½Cq ðyÞ ;

that is, the mapping C

ð2nÞ q

ð50Þ

is logarithmically convex on ð0; 1Þ.

1 Proof. Consider the following functions defined on I ¼ ½0; 1q q ,

2n a f ðtÞ ¼ taðx1Þ ðEqt q ðln tÞ Þ

2n b and gðtÞ ¼ tbðy1Þ ðEqt q ðln tÞ Þ :

By application of the q-Hölder’s integral inequality, with p ¼ 1a, we get

Z

1 1q

0

2n taðx1Þ tbðy1Þ Eqt q ðln tÞ dq t

"Z

1 1q

6 0

#a 2n t aðx1Þ:ð1=aÞ Eqt q ðln tÞ dq t



"Z

1 1q

0

#b 2n tbðy1Þ:ð1=bÞ Eqt q ðln tÞ dq t

;

which is equivalent to

Z 0

1 1q

2n taxþby1 Eqt q ðln tÞ dq t 6

"Z

1 1q

0

2n t x1 Eqt q ðln tÞ dq t

#a "Z

1 1q

0

#b 2n t y1 Eqt q ðln tÞ dq t

:

Then, Eq. (50) is a direct consequence of Eq. (13). h Corollary 11. Let ðp; p0 Þ; ðm; m0 Þ 2 ð0; 1Þ2 such that p þ p0 ¼ m þ m0 and a; b P 0 with a þ b ¼ 1. Then, we have

Bq ðaðp; p0 Þ þ bðm; m0 ÞÞ 6 ½Bq ðp; p0 Þa ½Bq ðm; m0 Þb :

ð51Þ

Proof. On the one hand, we have 0

Bq ðaðp; p0 Þ þ bðm; m0 ÞÞ ¼ Bq ðap þ bm; ap0 þ bm Þ ¼

Cq ðap þ bmÞCq ðap0 þ bm0 Þ Cq ðap þ bmÞCq ðap0 þ bm0 Þ ¼ : Cq ðaðp þ p0 Þ þ bðm þ m0 ÞÞ Cq ðap þ bm þ ap0 þ bm0 Þ

Since p þ p0 ¼ m þ m0 and a þ b ¼ 1, we have

Cq ðaðp þ p0 Þ þ bðm þ m0 ÞÞ ¼ Cq ðp þ p0 Þ ¼ Cq ðm þ m0 Þ:

ð52Þ

On the other hand, from Theorem 4, with n ¼ 0, we obtain

Cq ðap þ bmÞ 6 ½Cq ðpÞa ½Cq ðmÞb ;

ð53Þ

and



a

Cq ðap0 þ bm0 Þ 6 Cq ðp0 Þ ½Cq ðm0 Þb :

ð54Þ

Thus



a 



a

Cq ðap þ bmÞCq ðap0 þ bm0 Þ 6 Cq ðpÞCq ðp0 Þ

b

Cq ðmÞCq ðm0 Þ :

ð55Þ

From Eq. (52), we deduce that

Cq ðap þ bmÞCq ðap0 þ bm0 Þ Cq ðpÞCq ðp0 Þ 6 0 0 Cq ðaðp þ p Þ þ bðm þ m ÞÞ Cq ðp þ p0 Þ



Cq ðmÞCq ðm0 Þ b ; Cq ðm þ m0 Þ

which completes the proof. h Now, we recall that the logarithmic derivative of the q-gamma function is defined on ð0; 1Þ, by

Wq ðxÞ ¼

C0q ðxÞ : Cq ðxÞ

The following result gives some properties of the function Wq . Theorem 5. Wq is monotonic non-decreasing and concave on ð0; 1Þ. Proof. By taking n ¼ 0 in Theorem 4, we obtain

Cq ðax þ byÞ 6 ½Cq ðxÞa ½Cq ðyÞb ; for x; y > 0 and a; b P 0 such that a þ b ¼ 1.

ð56Þ

392

A. Fitouhi, K. Brahim / Applied Mathematics and Computation 204 (2008) 385–394

So the function ln Cq is convex. Then the monotonicity of Wq follows from the relation

C0q ðxÞ d ½ln Cq ðxÞ ¼ ¼ Wq ðxÞ; dx Cq ðxÞ

x > 0:

On the other hand, since

ðq; qÞ1 ð1  qÞ1x ; ðqx ; qÞ1

Cq ðxÞ ¼

ð57Þ

we obtain, for x > 0, 1 1 1 X X X d qxþk xþk ½ln Cq ðxÞ ¼  lnð1  qÞ þ ln q ¼  lnð1  qÞ þ ln q q qðxþkÞn dx 1  qxþk n¼0 k¼0 k¼0 Z q x1 1 X qðnþ1Þx ln q t dq t: ¼  lnð1  qÞ þ ln q ¼  lnð1  qÞ þ nþ1 ð1  qÞ 1  q 1 t 0 n¼0

Wq ðxÞ ¼

Now, let x; y > 0 and a; b P 0 such that a þ b ¼ 1. Then

Wq ðax þ byÞ þ lnð1  qÞ ¼

ln q ð1  qÞ

Z 0

q

t axþby1 ln q dq t ¼ ð1  qÞ 1t

Z 0

q

t aðx1Þþbðy1Þ dq t: 1t

ð58Þ

Since the mapping x7!tx is convex on R for t 2 ð0; 1Þ, we have

taðx1Þþbðy1Þ 6 at x1 þ bt

y1

;

for t 2 ½0; qq ; x; y > 0:

Thus,

ln q ð1  qÞ

Z 0

q

    Z q x1 Z q y1 t axþby1 ln q t ln q t dq t P a dq t þ b dq t : ð1  qÞ 0 1  t ð1  qÞ 0 1  t 1t

ð59Þ

According to the relations (58) and (59), we have

Wq ðax þ byÞ þ lnð1  qÞ P aðWq ðxÞ þ lnð1  qÞÞ þ bðWq ðyÞ þ lnð1  qÞÞ P aWq ðxÞ þ bWq ðyÞ þ lnð1  qÞ: This proves the concavity of the function Wq . h 5. Inequalities via the q-Grüss’s one In [6] Gauchman gave a q-analogue of the Grüss’ integral inequality namely Lemma 2. Assume that m 6 f ðxÞ 6 M, u 6 gðxÞ 6 U, for each x 2 ½a; b, where m; M; u; U are given real constants. Then

  Z b Z b  1  1 Z b 1   f ðxÞgðxÞdq x  f ðxÞdq x gðxÞdq x 6 ðM  mÞðU  uÞ:  2  4 b  a a ðb  aÞ a a

ð60Þ

As application of the previous inequality we state the following result Theorem 6. Let m; n > 0, we have

   1  1   6 : Bq ðm þ 1; n þ 1Þ   ½m þ 1q ½n þ 1q  4

ð61Þ

Remark that from the relations (15) and (11), the inequality (61) is equivalent to

jCq ðm þ n þ 2Þ  Cq ðm þ 2ÞCq ðn þ 2Þj 6

1 ½m þ 1q ½n þ 1q Cq ðm þ n þ 2Þ: 4

Proof. Consider the functions

f ðxÞ ¼ xm ;

gðxÞ ¼

ðxq; qÞ1 ; ðxqnþ1 ; qÞ1

x 2 ½0; 1; m; n > 0:

We have

0 6 f ðxÞ 6 1 and 0 6 gðxÞ 6 1 8x 2 ½0; 1:

ð62Þ

393

A. Fitouhi, K. Brahim / Applied Mathematics and Computation 204 (2008) 385–394

Then, using the q-Grüss’ integral inequality, we obtain

Z   

1

xm

0

ðxq; qÞ1 dq x  ðxqnþ1 ; qÞ1

Z

1

xm d q x

Z

0

1

0

  1 ðxq; qÞ1 6 : d x q  4 nþ1 ðxq ; qÞ1

ð63Þ

The inequality (61) follows from the definition of the q-beta function and the following facts: R 1 ðxq;qÞ1 1 dq x ¼ Bq ð1; n þ 1Þ ¼ ½nþ1 . h 0 ðxqnþ1 ;qÞ

R1 0

1 xm dq x ¼ ½mþ1 and q

q

1

6. q- Cebysev’s type inequalities and q-beta and q-gamma functions We begin this section by recalling the following Cebysev’s type inequality:

 Z Z b Z b Z b   b   hðxÞdx hðxÞf ðxÞgðxÞdx  hðxÞf ðxÞdx hðxÞgðxÞdx    a a a a 2 !2 3 Z b Z b Z b 6 kf k1 kgk1 4 hðxÞdx x2 hðxÞdx  xhðxÞdx 5; a

a

ð64Þ

a

provided that h is positive and f, g are differentiable with bounded first derivatives on ða; bÞ. A q-analogue of this inequality is given in the following lemma. Lemma 3. Let f, g and h be three functions defined on I such that (1) hðxÞ > 0, for all x 2 I, (2) Dq ðf Þ and Dq ðgÞ are bounded on I. Then, provided the q-integrals converge, we have

Z  Z Z Z    hðxÞdq x hðxÞf ðxÞgðxÞdq x  hðxÞf ðxÞdq x hðxÞgðxÞdq x   I I I I "Z Z  # Z 2

6 kDq f k1;I kDq gk1;I

x2 hðxÞdq x 

hðxÞdq x

I

where kDq f k1;I ¼ supx2I jDq f ðxÞj

xhðxÞdq x

I

and

ð65Þ

;

I

kDq gk1;I ¼ supx2I jDq gðxÞj.

Proof. From the definitions of the q-Jackson’s integrals and the q-derivative, we have for all x; y 2 I such that y < x,

f ðxÞ  f ðyÞ ¼

Z

x

Dq f ðtÞdq t

and gðxÞ  gðyÞ ¼

y

Z

x

Dq gðtÞdq t:

y

So, for all x; y 2 I,

jf ðxÞ  f ðyÞj 6 kDq f k1;I jx  yj and jgðxÞ  gðyÞj 6 kDq gk1;I jx  yj:

ð66Þ

Then,

Z  Z Z Z    hðxÞdq x hðxÞf ðxÞgðxÞdq x  hðxÞf ðxÞdq x hðxÞgðxÞdq x   I I I I Z Z    ¼ 1=2 hðxÞhðyÞ½f ðxÞ  f ðyÞ½gðxÞ  gðyÞdq xdq y ZI ZI 6 1=2 hðxÞhðyÞjf ðxÞ  f ðyÞjjgðxÞ  gðyÞjdq xdq y ðÞ I

I

6 1=2kDq f k1;I kDq gk1;I

Z a

b

Z

b

hðxÞhðyÞðx  yÞ2 dq xdq y:

a

Finally, the identity

1=2

Z Z I

hðxÞhðyÞðx  yÞ2 dq xdq y ¼

I

Z I

hðxÞdq x

Z I

x2 hðxÞdq x 

Z

xhðxÞdq x

2 ð67Þ

I

completes the proof. h Remark. Taking account of the specificity of the interval I, the inequality ðÞ holds. As a direct application, one has the following theorem.

394

A. Fitouhi, K. Brahim / Applied Mathematics and Computation 204 (2008) 385–394

Theorem 7. For m; n > 1 and r; s > 1, we have

jBq ðr þ 1; s þ 1ÞBq ðm þ r þ 1; n þ s þ 1Þ  Bq ðm þ r þ 1; s þ 1ÞBq ðr þ 1; n þ s þ 1Þj 6 qsþ1 ½mq ½nq ½Bq ðr þ 3; s þ 1ÞBq ðr þ 1; s þ 1Þ  B2q ðr þ 2; s þ 1Þ:

ð68Þ

Proof. Let f, g and h be the functions defined on I ¼ ½0; 1q by

f ðxÞ ¼ xm ;

gðxÞ ¼

ðxqsþ1 ; qÞ1 ; ðxqnþsþ1 ; qÞ1

hðxÞ ¼ xr

ðxq; qÞ1 : ðxqsþ1 ; qÞ1

It is easy to see that

Dq f ðxÞ ¼ ½mq xm1 ; kDq f k1;I 6 ½mq

and Dq gðxÞ ¼ qsþ1 ½nq

ðxqsþ2 ; qÞ1 ; ðxqnþsþ1 ; qÞ1

and kDq gk1;I 6 qsþ1 ½nq :

So, the previous lemma leads to

Z   

 Z 1 Z 1 Z 1  ðxq; qÞ1 ðxq; qÞ1 ðxq; qÞ1 rþm rþm ðxq; qÞ1 r   d x x d x x d x x d x q q q q  sþ1 nþsþ1 sþ1 nþsþ1 ðxq ; qÞ1 ðxq ; qÞ1 ðxq ; qÞ1 ðxq ; qÞ1 0 0 0 0 "Z #   Z Z 2 1 1 1 ðxq; qÞ1 ðxq; qÞ1 ðxq; qÞ1 6 qsþ1 ½nq ½mq : xr dq x xrþ2 dq x  xrþ1 dq x sþ1 sþ1 ðxq ; qÞ1 ðxq ; qÞ1 ðxqsþ1 ; qÞ1 0 0 0 1

xr

The result follows, then, from Eq. (14). h Taking r ¼ s ¼ 0 in Theorem 7, the following result holds. Corollary 12. For m; n > 1, we have

jBq ðm þ 1; n þ 1Þ 

q½mq ½nq 1 1 j6 ½m þ 1q ½n þ 1q ½3q ½22q

ð69Þ

and

jCq ðm þ n þ 2Þ  Cq ðm þ 2ÞCq ðn þ 2Þj 6

q½mq ½nq ½3q ½22q

½m þ 1q ½n þ 1q Cq ðm þ n þ 2Þ:

ð70Þ

References aric´, On some inequalities for beta and gamma functions via some classical inequalities, J. Inequal. Appl. 2005 5 (2005) [1] R.P. Agarwal, N. Elezovic´, J. Pec 593–613. [2] K. Brahim, N. Bettaibi, M. Sellami, Integral inequalities in quantum calculus, submitted for publication. [4] S.S. Dragomir, R.P. Agarwal, N.S. Barnett, Inequality for beta and gamma functions via some classical and new integral inequalities, J. Inequal. 5 (2) (2000) 103–165. [5] G. Gasper, M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and its Application, vol. 35, Cambridge University Press, Cambridge, UK, 1990. [6] H. Gauchman, Integral inequalities in q-calculus, Comput. Math. Appl. 47 (2004) 281–300. [7] F.H. Jackson, On a q-definite integrals, Quarterly J. Pure Appl. Math. 41 (1910) 193–203. [8] V.G. Kac, P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York, 2002. [9] T.H. Koornwinder, q-Special functions, a tutorial, in: M. Gerstenhaber, J. Stasheff (Eds.), Deformation Theory and Quantum Groups with Applications to Mathematical Physics, Contemporary Mathematics, vol. 134, American Mathematical Society, 1992. [11] D.S. Mitrinovic´, J.E. Pecˇaric´, A.M. Fink, Inequalities involving functions and their integrals and derivatives, Mathematics and Its Applications (East European Series), vol. 53, Kluwer Academic, Dordrecht, 1991. [12] D.S. Mitrinovic´, J.E. Pecˇaric´, A.M. Fink, Classical and New Inequalities in Analysis, Mathematics and Its Applications (East European Series), vol. 61, Kluwer Academic, Dordrecht, 1993. [13] J.E. Pecˇaric´, F. Proschan, Y.L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Mathematics in Science and Engineering, vol. 187, Academic Press, Massachusetts, 1992. , S.D. Marinkovic , M.S. Stankovic , The inequalities for some types of q-integrals, arXiv math: CA/0605208 v1 8 May 2006. [14] P.M. Rajkovic [15] A. De Sole, V.G. Kac, On Integral Representations of q-gamma and q-beta Functions, Department of Mathematics, MIT, Cambridge, USA.