Some new asymptotic approximations of the ... - Semantic Scholar

Report 5 Downloads 74 Views
Applied Mathematics and Computation 253 (2015) 1–7

Contents lists available at ScienceDirect

Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc

Some new asymptotic approximations of the gamma function based on Nemes’ formula, Ramanujan’s formula and Burnside’s formula Dawei Lu, Lixin Song ⇑, Congxu Ma School of Mathematical Sciences, Dalian University of Technology, Dalian 116023, China

a r t i c l e

i n f o

a b s t r a c t In this paper, we construct some new approximations of the gamma function based on Nemes’ formula, Ramanujan’s formula and Burnside’s formula. Using these approximations, some inequalities are established. Finally, for demonstrating the superiority of our new approximation over Mortici’s formula and other classical ones, some numerical computations are also given. Ó 2014 Elsevier Inc. All rights reserved.

Keywords: Gamma function Nemes’ formula Ramanujan’s formula Burnside’s formula Asymptotic approximations Rate of convergence

1. Introduction We often need to deal with big factorials in many areas of mathematics and science in general. Undoubtedly, one of the most known formulas for approximation of the factorial function is Stirling’s formula [1],

n! 

pffiffiffiffiffiffiffiffiffinn : 2pn e

ð1:1Þ

The next step in this direction is to define more accurate approximations for the factorial function. A more accurate approximation than formula (1.1) is Burnside’s formula [3],

pffiffiffiffiffiffiffin þ 1nþ2 2 : 2p e 1

n! 

ð1:2Þ

There are two approximations which are better than (1.2), Gosper’s formula [4],

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi  ffi 1 nn n!  2p n þ ; 6 e

ð1:3Þ

and Ramanujan’s formula [5],

n! 

pffiffiffiffiffiffiffinn 2p e

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 6 1 1 1 n3 þ n2 þ n þ : 2 8 240

Windschitl’s formula [6],

⇑ Corresponding author. E-mail addresses: [email protected] (D. Lu), [email protected] (L. Song), [email protected] (C. Ma). http://dx.doi.org/10.1016/j.amc.2014.12.077 0096-3003/Ó 2014 Elsevier Inc. All rights reserved.

ð1:4Þ

2

D. Lu et al. / Applied Mathematics and Computation 253 (2015) 1–7

n! 

n=2 pffiffiffiffiffiffiffiffiffinn  1 n sinh ; 2pn e n

ð1:5Þ

is more exact. Nemes’ formula [7],

!n pffiffiffiffiffiffiffiffiffinn 1 n!  2pn 1þ ; 1 e 12n2  10

ð1:6Þ

has the same number of exact digits as (1.5) but is much simpler. Recently, many researchers presented some more accurate approximations for the factorial function and its extension gamma function. Lu [14] presented a polynomial approximation for the factorial function as follows,

n! 

1=k pffiffiffiffiffiffiffiffiffinn  c1 c2 c3 1 þ þ 2 þ 3 þ  ; 2pn e n n n

c1 ¼

k ; 12

ð1:7Þ

where 2

c2 ¼

k ; 288

2

c3 ¼

kð5k  144Þ ;  51840

Based on the works of Windschitl and Mortici, Lu [15] provided a formula which is an extension of Windschitl’s formula as follows,

n! 

 n=2 pffiffiffiffiffiffiffiffiffinn  1 a7 a9 a11 n sinh þ 7 þ 9 þ 11 þ    ; 2pn e n n n n

a7 ¼

1 ; 810

ð1:8Þ

where

a9 ¼ 

67 ; 42525

a11 ¼

19 ;  8505

In addition, some authors paid attention to giving increasingly better approximations for the gamma function by using the continued fractions. For example, Mortici [13] provided a new continued fraction approximation starting from Nemes’ formula (1.4) as follows,

1x

0

Cðx þ 1Þ 

B pffiffiffiffiffiffiffiffiffi B 1 B 2pxex Bx þ B 12x  10xþ 1 @ xþ

a b

c xþ xþ d . xþ . .

C C C C; C A

ð1:9Þ

where

a¼

2369 ; 252



2117009 ; 1193976



393032191511 ; 1324011300744



33265896164277124002451 ;  14278024104089641878840

Using the continued fractions, Lu [16] provided an asymptotic expansion for the factorial function starting from Burnside’s formula (1.2) as follows,

0 1   xþ 2B pffiffiffiffiffiffiffi x þ 1 a1 B 2 Cðx þ 1Þ  2p B1 þ 2 @ e x þ a2ax3 x xþ

a x xþ 4 . xþ . .

1x12 C C C A

;

ð1:10Þ

where

a1 ¼ 

1 ; 24

a2 ¼ 

41 ; 240

a3 ¼ 

14 ; 41

a4 ¼

1695131 ;  2892960

Very recently, using a different method, Chen [17] gave a new approximation related to Windschitl’s formula,

Cðx þ 1Þ 

xþ 1 þ 191 þ 25127 þ pffiffiffiffiffiffiffiffiffixx  1 2 270x3 56700x5 5103000x7 x sinh : 2px e x

ð1:11Þ

It is their works that motivate our study. In this paper, based on Nemes’ formula (1.6), Ramanujan’s formula (1.4), the extension of Burnside’s formula (1.10) and the works of Chen [17], using the same method in Mortici [13], we introduce some new approximations as follows,

D. Lu et al. / Applied Mathematics and Computation 253 (2015) 1–7

3

Theorem 1.1. For the factorial function, based on (1.6), we have

n! 

!nþ 2369 3  6157 5 þ 14162903 7 þ 907200n 1437004800n 302400n pffiffiffiffiffiffiffiffiffinn 1 2pn 1þ : 1 2 e 12n  10

ð1:12Þ

Based on (1.4), we have

n! 

16 11 3 þ 13 4  7 5 þ pffiffiffiffiffiffiffiffiffinn  115200n 5760n 6720n 1 1 1 1þ þ 2þ : 2pn e 2n 8n 240n3

ð1:13Þ

Based on (1.10), we have

!n12þ 7 2  52531 3 þ 6763 4 þ 1 1 120n 1209600n 2419200n pffiffiffiffiffiffiffin þ 1nþ2  24 2 n!  2p 1 þ 2 41 : e n  240

ð1:14Þ

Next, using Theorem 1.1, we provide some inequalities for the gamma function. Theorem 1.2. (i) For every x > 2, it holds:

!xþ 2369 3  6157 5 907200x 302400x 1 Cðx þ 1Þ 1þ < pffiffiffiffiffiffiffiffiffixx < 1 2 12x  10 2px e

!xþ 2369 3 302400x 1 1þ : 1 2 12x  10

ð1:15Þ

(ii) For every x > 2, it holds:

 16 11 3  16 11 3 þ 13 4 5760x 5760x 6720x 1 1 1 Cðx þ 1Þ 1 1 1 p ffiffiffiffiffiffiffiffi ffi 1þ þ 2þ < < 1 þ þ þ :   2 3 x x 2x 8x 240x3 2x 8x 240x 2px e

ð1:16Þ

(iii) For every x > 2, it holds:

!x12þ 7 2 1 120x  24 Cðx þ 1Þ 1 þ 2 41 < < pffiffiffiffiffiffiffixþ1xþ12 x  240 2p e 2

!x12þ 7 2  52531 3 1 120x 1209600x  24 1 þ 2 41 : x  240

ð1:17Þ

To obtain Theorem 1.1, we need the following lemma which was used in [8–10,13] and is very useful for constructing asymptotic expansions. Lemma 1.1. If ðxn ÞnP1 is convergent to zero and there exists the limit

lim ns ðxn  xnþ1 Þ ¼ l 2 ½1; þ1;

n!1

ð1:18Þ

with s > 1, then

lim ns1 xn ¼

n!1

l : s1

ð1:19Þ

Lemma 1.1 was first proved by Mortici in [11]. From Lemma 1.1, we can see that the speed of convergence of the sequence ðxn ÞnP1 increases together with the value s satisfying (1.18). The rest of paper is arranged as follows. In Section 2, the proof of Theorem 1.1 is given. In Section 3, we provide the proof of Theorem 1.2. In Section 4, we give some numerical computations to demonstrate the superiority of our new series respectively. 2. Proof of Theorem 1.1 Based on the argument of Theorem 2.1 in [12] or Theorem 5 in [13], we need to find the value a1 2 R which produces the most accurate approximation of the form

!nþa13 n pffiffiffiffiffiffiffiffiffinn 1 n!  2pn 1þ : 1 e 12n2  10

ð2:1Þ

To measure the accuracy of this approximation, a method is to define a sequence ðt n ÞnP1 by the relations

!nþa13 n pffiffiffiffiffiffiffiffiffinn 1 n!  2pn 1þ expðt n Þ; 1 2 e 12n  10

ð2:2Þ

4

D. Lu et al. / Applied Mathematics and Computation 253 (2015) 1–7

and to say that an approximation (2.1) is better if t n converges to zero faster. From (2.2), we have

!    1 1 a1  1 : ln n þ n  n þ 3 ln 1 þ tn ¼ ln n!  ln 2p  n þ 1 2 2 n 12n2  10

ð2:3Þ

Thus,

tn  t nþ1

!      1 1 a1  1 ln 1 þ  n þ 3 ln 1 þ ¼ 1 þ n þ 1 2 n n 12n2  10 ! ! a1 1 ln 1 þ : þ nþ1þ 1 12ðn þ 1Þ2  10 ðn þ 1Þ3

ð2:4Þ

Developing the power series in 1=n, we have

tn  t nþ1 ¼

  302400a1 þ 2369 302400a1 þ 2369 1668800a1 þ 10793 1 þ þ þO 9 : 6 7 8 725760n 241920n 576000n n

ð2:5Þ

From Lemma 1.1, we know that the speed of convergence of the sequence ðt n ÞnP1 is even higher as the value s satisfying (1.18). Thus, using Lemma 1.1, we have: (i) If a1 –

2369 , 302400

lim n5 t n ¼

n!1

then the rate of convergence of the sequence ðt n ÞnP1 is n5 , since

302400a1 þ 2369 – 0: 3628800

2369 (ii) If a1 ¼ 302400 , then from (2.5), we have

tn  t nþ1 ¼ 

  6157 1 þO 9 ; 8 1555200n n

and the rate of convergence of the sequence ðtn ÞnP1 is n7 , since

lim n7 t n ¼ 

n!1

6157 : 10886400

2369 We know that the fastest possible sequence ðt n ÞnP1 is obtained only for a1 ¼ 302400 .

Next, we define the sequence ðwn ÞnP1 by the relation

!nþ 2369 3 þa25 n 302400n pffiffiffiffiffiffiffiffiffinn 1 n!  2pn 1þ expðwn Þ: 1 e 12n2  10

ð2:6Þ

Using the same method from (2.1)–(2.5), we have that the fastest possible sequence ðwn ÞnP1 is obtained only for 6157 a2 ¼  907200 . 14162903 Inductively, a3 ¼ 1437004800 ;   , and the new approximation (1.12) is obtained. We can also obtain the approximations (1.13) and (1.14) by using the same method in the proof of (1.12). Here, we omitted the details. 3. Proof of Theorem 1.2 To give the proof of Theorem 1.2, we first need the following basic result of Alzer [2] for all x > 0 and n P 0,

  n X 1 1 B2j ln x  x þ ln 2p þ ln Cðx þ 1Þ ¼ x þ þ ð1Þn Rn ðxÞ; 2 2 2jð2j  1Þx2j1 j¼1

ð3:1Þ

where Rn ðxÞ is completely monotonic on ð0; 1Þ; Bj is the jth Bernoulli number defined by the power series expansion

ex

1 1 X x xl x X x2l ¼ Bl ¼ 1  þ B2l : 2 l¼1 1 l! ð2lÞ! l¼0

ð3:2Þ

(B2lþ1 ¼ 0, for all l P 1, and the first few Bernoulli numbers are B1 ¼ 1=2; B2 ¼ 1=6; B4 ¼ 1=30; B6 ¼ 1=42). From (3.1), Mortici obtained the following inequalities in [12,13], for x > 0:

D. Lu et al. / Applied Mathematics and Computation 253 (2015) 1–7



1 1 1 1 1 691  þ  þ  12x 360x3 1260x5 1680x7 1188x9 360360x11   1 1 1 1 1 : < exp  þ  þ 12x 360x3 1260x5 1680x7 1188x9

exp



5

Cðx þ 1Þ < pffiffiffiffiffiffiffiffiffixx 2p x e ð3:3Þ

Next we give the proof of first inequalities in Theorem 1.2. For the right inequality (1.15) in Theorem 1.2, combining (3.3), we need to get



1 1 1 1 1 exp  þ  þ 12x 360x3 1260x5 1680x7 1188x9


0, for every x 2 ½2; 1Þ. Thus, f is strictly increasing on ½2; 1Þ, with f ð1Þ ¼ 0, so f ðxÞ < 0, for every x 2 ½2; 1Þ, then the right inequality (1.15) in Theorem 1.2 is obtained. For the left inequality (1.15) in Theorem 1.2, combining (3.3), we need to get

!xþ 2369 3  6157 5   907200x 302400x 1 1 1 1 1 1 691 : 1þ < exp  þ  þ  1 12x 360x3 1260x5 1680x7 1188x9 360360x11 12x2  10

ð3:7Þ

Inequality (3.7) is equivalent to gðxÞ > 0, where

gðxÞ ¼

1 2369 6157 x þ 302400x 3  907200x5

!

!  1 1 1 1 1 691 1 :  ln 1 þ  þ  þ  1 12x 360x3 1260x5 1680x7 1188x9 360360x11 12x2  10

ð3:8Þ

We have

g 0 ðxÞ ¼ 

40 Gðx  2Þ ; 143 x7 ð120x2  1Þð40x2 þ 3Þð907200x6 þ 7107x2  6157Þ2

ð3:9Þ

where

GðxÞ ¼ 15994175570000x12 þ 2783860213680000x11 þ 30305400687156000x10 þ 197808515736720000x9 þ 861581579139338150x8 þ 2635038117227170400x7 þ 5791729104530007002x6 þ 9192725022193805624x5 þ 10413632818057286729x4 þ 8157265016456769992x3 þ 4148422041687612968x2 þ 1205307635021848160x þ 144918239064982466: g 0 ðxÞ < 0, for every x 2 ½2; 1Þ. Thus, g is strictly decreasing on ½2; 1Þ, with gð1Þ ¼ 0, so gðxÞ > 0, for every x 2 ½2; 1Þ, then the left inequality (1.15) in Theorem 1.2 is obtained. Since the proofs of inequalities (1.16) and (1.17) are the same to the one of inequality (1.15), we also omitted the details here. Remark 3.1. In fact, if we let

!xþ 2369 3  302400x 1 1 1 1 1 1  1 þ  þ  þ ; 1 3 5 7 9 2 12x 360x 1260x 1680x 1188x 12x  10

 UðxÞ ¼ exp

6

D. Lu et al. / Applied Mathematics and Computation 253 (2015) 1–7

VðxÞ ¼ exp

!xþ 2369 3  6157 5  907200x 302400x 1 1 1 1 1 691 1  1 þ  þ  þ  : 1 3 5 7 9 11 2 12x 360x 1260x 1680x 1188x 360260x 12x  10



By some simulations, we obtain the following figure. From Fig. 1, it is easy to see that UðxÞ < 0 and VðxÞ > 0 uniformly on ½1:6; 1Þ. 4. Numerical computation In this section, we give Table 1 to demonstrate the superiority of our new series respectively. Mortici’s formula (1.9),

0 pffiffiffiffiffiffiffiffiffi B n n!  2pne @n þ

1n 1 12n 

1 2369 10nþ 252 n

C A ¼ an :

ð4:1Þ

The new formula (1.12),

n! 

!nþ 2369 3 302400n pffiffiffiffiffiffiffiffiffinn 1 1þ ¼ An : 2pn 1 2 e 12n  10

ð4:2Þ

The formula (1.7) as k = 6,

6 pffiffiffiffiffiffiffiffiffinn  1 1 1 11 79 1þ þ 2þ  þ ¼ bn : 2pn e 2n 8n 240n3 1920n4 26880n5 1

n! 

ð4:3Þ

The new formula (1.13),

n! 

16 11 3 þ 13 4 pffiffiffiffiffiffiffiffiffinn  5760n 6720n 1 1 1 1þ þ 2þ ¼ Bn : 2pn 3 e 2n 8n 240n

ð4:4Þ

The formula (1.10),

pffiffiffiffiffiffiffin þ 1 2 2p e

nþ12

n! 

0

1n12

B 1 B  24 B1 þ 41 n B @ n2  24014n

C C C C A

¼ cn :

41 xþ 1695131 nþ 2892960

Fig. 1. Simulations for UðxÞ and VðxÞ.

ð4:5Þ

7

D. Lu et al. / Applied Mathematics and Computation 253 (2015) 1–7 Table 1 Simulations for an ; An ; bn ; Bn ; cn and C n . ðan  n!Þ=n!

n

ðAn  n!Þ=n!

1:4815  10

2:2543  10

100

1:4816  1022

7:2392  1023

2:3320  1020

500

1:1575  10

24

25

22

2500

1:8965  1027

15

7:2350  10

16

5:6557  10

9:2663  1028

14

3:6505  10

ðn!  cn Þ=n!

ðBn  n!Þ=n!

ðn!  bn Þ=n!

50

1:4969  1024

15

ðC n  n!Þ=n!

2:6686  10

14

4:9363  10

8:3704  1015

2:0169  1021

5:0542  1020

7:5463  1021

23

3:0948  10

22

7:9075  10

1:1720  1022

1:2537  1025

3:2414  1024

4:7828  1025

The new formula (1.14),

n! 

!n12þ 7 2  52531 3 1 120n 1209600n pffiffiffiffiffiffiffin þ 1nþ2 1 2 1 þ 2 2441 ¼ Cn: 2p e n  240

ð4:6Þ

Combining Theorem 1.2, we have Table 1. From Table 1, it is easy to see that our new formula (4.2), (4.4) and (4.6) are more accurate than formula (4.1), (4.3) and (4.5) respectively. Acknowledgement We thank the referees for careful reading of our paper and for helpful and valuable comments and suggestions. The comments by the referees helped the author improve the exposition of this paper significantly. The research of the first author is supported by the National Natural Science Foundation of China (Grant Nos. 11101061 and 11371077). The second author is supported by the National Natural Science Foundation of China (Grant Nos. 11371077 and 61175041). References [1] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Nation Bureau of Standards, Applied Mathematical Series, 55, 9th Printing, Dover, New York, 1972. [2] H. Alzer, On some inequalities for the gamma and psi functions, Math. Comput. 66 (217) (1997) 373–389. [3] W. Burnside, A rapidly convergent series for log N!, Messenger Math 46 (1917) 157–159. [4] R.W. Gosper, Decision procedure for indefinite hypergeometric summation, Proc. Natl. Acad. Sci. USA 75 (1978) 40–42. [5] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publ. H., Springer, New Delhi, Berlin, 1988. Intr. by G.E. Andrews. [6] http://www.rskey.org/gamma.htm [7] G. Nemes, New asymptotic expansion for the Gamma function, Arch. Math. 95 (2010) 161–169. [8] C. Mortici, Very accurate estimates of the polygamma functions, Asymptot. Anal. 68 (3) (2010) 125–134. [9] C. Mortici, A quicker convergence toward the gamma constant with the logarithm term involving the constant e, Carpath. J. Math. 26 (1) (2010) 86–91. [10] C. Mortici, On new sequences converging towards the Euler–Mascheroni constant, Comput. Math. Appl. 59 (8) (2010) 2610–2614. [11] C. Mortici, Product approximations via asymptotic integration, Am. Math. Monthly 117 (5) (2010) 434–441. [12] C. Mortici, A new Stirling series as continued fraction, Numer. Algorithms 56 (1) (2011) 17–26. [13] C. Mortici, A continued fraction approximation of the gamma function, J. Math. Anal. Appl. 402 (2013) 405–410. [14] D. Lu, X. Wang, A generated approximation related to Gosper’s formula and Ramanujan’s formula, J. Math. Anal. Appl. 406 (2013) 287–292. [15] D. Lu, L. Song, C. Ma, A generated approximation of the gamma function related to Windschitl’s formula, J. Number Theory 140 (2014) 215–225. [16] D. Lu, X. Wang, A new asymptotic expansion and some inequalities for the gamma function, J. Number Theory 140 (2014) 314–323. [17] C.-P. Chen, Asymptotic expansions of the gamma function related to Windschitl’s formula, Appl. Math. Comput. 245 (2014) 174–180.