Standard Halo vs. Halo Peptide

Report 2 Downloads 132 Views
Fused-Core® Particles for the Fast, High Resolution Separation of Peptides

Fused-Core Particle Analysis Electron Micrographs of Halo Peptide

Standard Halo vs. Halo Peptide 3500

3000

4.9% RSD

2500

Halo Peptide                                 mean = 2.85 um, SD = 0.14 Standard Halo                          mean = 2.82 um, SD = 0.14

2000

1500

1000

500

0 0 ‐500

1

2

3

4

5

Particle Diameter, [µm]

6

Fused-Core® Peptide Particles Silica --------------------High Purity Type B Overall diameter---------------------2.8 µm Solid core diameter------------------1.7 µm Porous shell thickness---------------0.5 µm Avg. pore diameter-------------------16 nm Surface area, nitrogen---------------70 m2/g Pore volume ------------------------0.23 mL/g Particle density ---------------------1.3 cm3/g

Fused-Core Pore Analysis Standard Halo vs. Halo Peptide N2 Absorption

Fused-Core Pore Size Analysis Standard Halo vs. Halo Peptide Inverse SEC Test Conditions: Columns: 4.6 x 150 mm Mobile Phase: THF Flowrate: 1.0 ml/min Samples: polystyrene standards Detection: UV at 254 nm

1000000

Log Molecular Weight

100000

Fused-core Peptide Silica 150 A 10000

Standard fused-core silica 90 A

1000

Relative Retention Volume 100

Column Efficiency Solute: beta‐amyloid (1‐38) MW = 4131

Halo, 9 nm pores

Halo Peptide, 16 nm  pores

Columns: 4.6 x 100 mm; Particle size: 2.7 μm Mobile Phase: 50% ACN/50% water/0.1% TFA Temperature: 25°C Agilent 1100 with autosampler

Columns: 4.6 x 100 mm; Particle size: 2.7 μm Standard Halo: 27% ACN/73 % water /0.1% TFA; k = 3.0 at 1.0 mL/min Halo Peptide: 29% ACN/71% water /0.1% TFA; k = 3.0 at 1.0 mL/min Temperature: 60°C Instrument: Agilent 1100 with autosampler using both 3 and 6 µL heat exchangers

Sample Loading Column: 4.6 x 100 mm Halo Peptide ES-C18; T= 60 °C Sample: Bovine insulin, MW= 5733; Inj vol = 10 µL Mobile Phase: 0.1% TFA/31.5% ACN, Flow Rate: 1 mL/min

Halo Peptide, 16 nm

Halo, 9 nm

Column Stability Column: 2.1 x 100 mm, Halo Peptide ES-C18; Flow Rate: 0.5 mL/min; T= 60 °C A: 0.1% TFA; B: 0.1% TFA/70%; ACN; Gradient: 9-55% B in 10 min.; Inj vol: 5 µL (Gly-Tyr, Val-Tyr-Val, Met-enk, Angio II, Leu-enk, RNAase, P. Insulin) Shimadzu UFLC XR

Injection 775 Injection 600 Injection 400 Injection 200 Injection 1

t (min)

Halo Peptide ES-C18 Protein and Peptide Separations Column: 4.6 x 100 mm; Flow rate: 1.5 mL/min; Temperature: 30° C A: 0.1% TFA/10% ACN, B: 0.1% TFA/70% ACN Gradient: 0% to 50% B in 15 min.; Injection volume: 5 µL w =0.0303

w =0.0686

Standard Halo w =0.0372

w =0.0413

w =0.0294

w =0.0437

Standard Halo w=0.0819

w =0.0400 w =0.0449

w =0.0433

w=0.0861

w =0.2257

Halo Peptide w =0.0376

w=0.0516

w =0.0392

w =0.0777

w=0.0516

Halo Peptide

w=0.5411

w=0.4671

w=0.0491 w=0.1043

w=0.0457 w=0.0837

w =0.0384

Sample 1 Gly-Tyr, Val-Tyr-Val, Met-enk, Angiotensin II, Leu-enk Ribonuclease, Porcine Insulin

Sample 2 Leu-enk Bovine Insulin, Human Insulin, Cytochrome C, Lysozyme

Tryptic Digest Column: 2.1 x 100 mm, Halo Peptide ES-C18; Flow Rate: 0.25 mL/min; T= 45 °C A: 0.1% TFA; B: 0.1% TFA/80% ACN; Gradient: 5-65% B in 120 min.; Sample: 15 µL (1 µg/µL) apo-myoglobin digest Agilent 1200 SL npc = 212 Pmax = 124 bar

ti

Minutes

Peak capacity [npc] calculated as tf – ti ; Peaks with * used for W4σ

W4σ

tf

Rapid Separation at High Temperature Column: 2.1 x 50 mm Halo Peptide ES-C18; Flow: 0.5 mL/min; A: 0.1% TFA; B: 0.1% TFA/80% ACN; Gradient: 15-50% B in 12.5 min.; Sample: 5 µL (250-500 ng) A Peptides

100 °C

90 °C

A(12-28)

80 °C

70 °C

better recovery at higher temps

Longer Columns for High Resolution Column: 2 @ 2.1 x 100 mm Halo Peptide ES-C18; Flow: 0.5 mL/min; T= 45 °C A: 0.1% TFA; B: 0.1% TFA/80% ACN; Gradient: 5-65% B in 120 min.; Sample: 15 µL (1 µg/µL) tryptic digests

Apo-myoglobin

Transferrin

2 columns in tandem

npc = 297 Pmax = 476 bar

Solute: beta-amyloid (1-38) MW = 4131

Halo, 9 nm pores

Halo Peptide, 16 nm pores

Columns: 4.6 x 100 mm; Particle size: 2.7 μm Standard Halo: 27% ACN/73 % water /0.1% TFA; k = 3.0 at 1.0 mL/min Halo Peptide: 29% ACN/71% water /0.1% TFA; k = 3.0 at 1.0 mL/min Temperature: 60°C Instrument: Agilent 1100 with autosampler using both 3 and 6 µL  heat exchangers

7.0

6.5

Solute: beta‐amyloid (1‐38) MW = 4131

6.0

3 µm, 300 Å

Reduced Plate Height, h

5.5

5.0

4.5

4.0

3.5

3.0

Halo Peptide, 2.7 µm, 160 Å

2.5

2.0

1.5 0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Mobile Phase Velocity, mm/sec

Columns: 4.6 x 100 mm; Particle size: 3.0 μm and 2.7 μm : 28% ACN/72 % water /0.1% TFA; k = 3.6 at 1.0 mL/min Halo Peptide: 29% ACN/71% water /0.1% TFA; k = 3.0 at 1.0 mL/min Temperature: 60°C Instrument: Agilent 1100 with autosampler using both 3 and 6 µL heat exchangers

Halo Peptide ES-C18 Comparison with 90 Ångstrom Halo C18 • For peptides > 5 aa residues, retention is increased on the Halo Peptide ES-C18 column. • For larger molecules, peak widths are greatly reduced due to improved mass transfer. Column: 4.6 x 100 mm; Flow rate: 1.5 mL/min; Temperature: 30° C A: 10% ACN/90%Water/0.1% TFA;B: 70% ACN/30% Water/0.1 % TFA Gradient: 0% to 50% B in 15 min.; Injection volume: 5 µL; Sample 1 w =0.0303

Standard Halo

w =0.0686 w =0.0392

w =0.0372 w =0.0413

w =0.0294

Halo Peptide w =0.0376

Column: 4.6 x 100 mm; Flow rate: 1.5 mL/min; Temperature: 30° C A: 10% ACN/90%Water/0.1% TFA;B: 70% ACN/30% Water/0.1 % TFA Gradient: 15% to 50% B in 15 min.; Injection volume: 5 µL; Sample 2

w=0.0516 w =0.0437

w =0.0433

w=0.0861

w=0.0819

w =0.2257

w =0.0400 w =0.0449

Standard Halo

w=0.0516

Halo Peptide

w=0.5411

w=0.4671

w=0.0491 w=0.1043

w=0.0457 w=0.0837

w =0.0777 w =0.0384

Sample 1

Sample 2

Gly-Tyr (238 Da), Val-Tyr-Val (380 Da), Met Enkephalin (574 Da), Angiotensin II (1046 Da) Leu Enkephalin (556 Da), Ribonuclease (13.7 kDa), Porcine Insulin (5807 Da)

Leu Enkephalin. Bovine Insulin (5734 Da), Human Insulin (5808 Da). Cytochrome C (12.4 kDa), Lysozyme (14.4 kDa)

Conclusions  Fused-core silica packing materials with enlarged pore size (160 Å) have been successfully created.  These packing materials exhibit a surprisingly narrow particle size distribution and high physical stability.  Columns prepared from the moderate pore size Halo particles exhibit excellent separation efficiencies, for both small and larger molecules.  A highly robust material, Halo Peptide ES-C18, has use for peptide and small protein separations.

Recommend Documents