Steganalysis in Technicolor - Boosting WS Detection of Stego Images ...

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor Boosting WS Detection of Stego Images from CFA-Interpolated Covers

Matthias Kirchner and Rainer Böhme University of Münster

IEEE ICASSP | Florence, Italy | May 8, 2014

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

2 /16

Are Steganographers Colorblind?

research community seems to live in a monochromatic world where grayscale images abound

living knowledge WWU Münster

I

Matthias Kirchner

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

2 /16

Are Steganographers Colorblind?

research community seems to live in a monochromatic world where grayscale images abound I a more colorful world raises questions about steganographic security

living knowledge WWU Münster

I

Matthias Kirchner

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

2 /16

Are Steganographers Colorblind?

research community seems to live in a monochromatic world where grayscale images abound I a more colorful world raises questions about steganographic security 1 how plausible are grayscale images?

Matthias Kirchner

living knowledge WWU Münster

I

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

2 /16

Are Steganographers Colorblind?

research community seems to live in a monochromatic world where grayscale images abound I a more colorful world raises questions about steganographic security 1 how plausible are grayscale images? 2 how much can steganalysts gain from color information?

Matthias Kirchner

living knowledge WWU Münster

I

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

2 /16

Are Steganographers Colorblind?

research community seems to live in a monochromatic world where grayscale images abound I a more colorful world raises questions about steganographic security 1 how plausible are grayscale images? 2 how much can steganalysts gain from color information?

I

this work: WS steganalysis and bilinear CFA interpolation

Matthias Kirchner

living knowledge WWU Münster

I

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

WS Steganalysis

[Fridrich & Goljan, 2004; Ker & Böhme, 2008]

ˆ of uniform LSB replacement embedding in estimates the embedding rate p grayscale images (0) n ˆ= p

n 2X

n

i=1

 (p)

(−1) xi

(p)

xi

(0)

− ˆxi



x x (p) xˆ (0) p

cover object ∈ Z stego object ∈ Zn cover estimate embedding rate

living knowledge WWU Münster

I

3 /16

Matthias Kirchner

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

WS Steganalysis

ˆ of uniform LSB replacement embedding in estimates the embedding rate p grayscale images (0) n ˆ= p

I

[Fridrich & Goljan, 2004; Ker & Böhme, 2008]

n 2X

n

 (p)

(−1) xi

(p)

xi

(0)

− ˆxi



i=1

x x (p) xˆ (0) p

cover object ∈ Z stego object ∈ Zn cover estimate embedding rate

cover estimate: linear prediction from spatial neighboorhood − 41

FKB8 :

1 2 − 41

Matthias Kirchner

1 2

− 41

0 21 1 1 2 −4

FLS8 :

b a b

a 0 a

b a b

living knowledge WWU Münster

I

3 /16

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

WS Steganalysis

n 2X

n

 (p)

wi (−1) xi

(p)

xi

(0)

− ˆxi



i=1

x x (p) xˆ (0) p w

cover object ∈ Z stego object ∈ Zn cover estimate embedding rate vector of weights

cover estimate: linear prediction from spatial neighboorhood − 41

FKB8 :

I

[Fridrich & Goljan, 2004; Ker & Böhme, 2008]

ˆ of uniform LSB replacement embedding in estimates the embedding rate p grayscale images (0) n ˆ= p

I

3 /16

1 2 − 41

1 2

− 41

0 21 1 1 2 −4

FLS8 :

b a b

a 0 a

b a b

enhanced variants for various assumptions about cover source and embedding strategies Matthias Kirchner

living knowledge WWU Münster

I

Steganalysis in Technicolor

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

4 /16

CFA Interpolation typical digital images are captured with a color filter array Bayer pattern I

red channel

Matthias Kirchner

at least 2/3 of all pixels are interpolated

green channel

blue channel

living knowledge WWU Münster

I

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

4 /16

CFA Interpolation typical digital images are captured with a color filter array Bayer pattern

red channel

Matthias Kirchner

I

at least 2/3 of all pixels are interpolated

I

intra-channel and inter-channel dependencies

green channel

blue channel

living knowledge WWU Münster

I

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

4 /16

CFA Interpolation typical digital images are captured with a color filter array Bayer pattern I

at least 2/3 of all pixels are interpolated

I

intra-channel and inter-channel dependencies 0

bilinear interpolation:

Fgreen :

Fred :

red channel

Matthias Kirchner

green channel

blue channel

1 4

1 4

1

0 1 4

0

1 4

0

1 4 1 2 1 4

1 2

1 4 1 2 1 4

1 1 2

living knowledge WWU Münster

I

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

5 /16

Spatial Neighborhood Categories CFA configuration defines characteristic pixel neighborhood categories

Bayer pattern

green channel

“raw”

Matthias Kirchner

red channel

interpolated

living knowledge WWU Münster

I

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

5 /16

Spatial Neighborhood Categories CFA configuration defines characteristic pixel neighborhood categories x {C} = (xi | i ∈ C) C ∈ {R, 4N, 4D, 2H, 2V} Bayer pattern

green channel

red channel

4D 2H 2V

4N

Matthias Kirchner

“raw”

living knowledge WWU Münster

I I

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

6 /16

Spatial Neighborhood Predictability I

OLS linear prediction from all 3 × 3 neighborhoods ( FLS8 ) per category

I

prediction error 12

4N

R

4N

R

4N

R

4N

R

4N

R

4N

R

4N

R

4N

R

4N

R

4N

R

4N

R

4N

R

4N

RMS

8

6 4

bilinear interpolation, green channel, 7408 images (size: 512×512)

2

0

4N

R

Matthias Kirchner

global

living knowledge WWU Münster

10

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

6 /16

Spatial Neighborhood Predictability I

OLS linear prediction from all 3 × 3 neighborhoods ( FLS8 ) per category

I

prediction error direct neighbors

12

10

3 4

4

2

0

4N

R

Matthias Kirchner

global

4N

R

4N

R

4N

R

4N

R

4N

R

1 2

4N

R

4N

R

4N

1 4

R

4N

R

4N

R

4N

R

4N

R

4N

6 diagonal neighbors

RMS

8

estimated coefficients

0 − 41

bilinear interpolation, green channel, 7408 images (size: 512×512)

− 21

4N

R

global

living knowledge WWU Münster

I

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

6 /16

Spatial Neighborhood Predictability I

OLS linear prediction from all 3 × 3 neighborhoods ( FLS8 ) per category

I

prediction error

I

10

“perfect” predictability of interpolated pixels

1 2 1 4

6 diagonal neighbors

RMS

8

3 4

4

2

0

4N

R

Matthias Kirchner

global

0 − 41

bilinear interpolation, green channel, 7408 images (size: 512×512)

− 21

4N

R

global

living knowledge WWU Münster

direct neighbors

12

estimated coefficients

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

7 /16

CFA-Inspired Linear Pixel Predictors different neighborhood categories, C, call for tailored predictors   (p) option 1: estimated from image per category, FLS8 x {C}

green channel

red channel 4D 2H 2V

4N Matthias Kirchner

R

living knowledge WWU Münster

I

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

7 /16

CFA-Inspired Linear Pixel Predictors different neighborhood categories, C, call for tailored predictors   (p) option 1: estimated from image per category, FLS8 x {C}   (p) option 2: fixed pre-set filter kernels, FC x {C} F4N

bilinear interpolation: 0 green channel

1 4

red channel

0

1 4

0 1 4

F2H 0

0

1 4

1 2

0

0

0 0 0

0 1 2

0

4D 2H 2V

1 4

0 4N Matthias Kirchner

R

F2V

F4D

1 4

0 0 0

1 4

0 1 4

0 0 0

1 2

0 1 2

0 0 0

living knowledge WWU Münster

I

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

8 /16

CFA-WS Steganalysis utilization of CFA neighborhood relations in individual color channels (p)   2 X (p) ˆC = (−1) xi xi − FC x (p) i p |{C}|

x (p) FC

{i∈C}

p

green channel

red channel 4D 2H 2V

4N Matthias Kirchner

R

stego object ∈ Zn predictor for category C ∈ {R, 4N, 4D, 2H, 2V} embedding rate

living knowledge WWU Münster

I

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

8 /16

CFA-WS Steganalysis utilization of CFA neighborhood relations in individual color channels x (p) FC

(p)   2 X (p) ˆC = wi (−1) xi xi − FC x (p) i p |{C}|

{i∈C}

p w green channel

red channel 4D 2H 2V

4N Matthias Kirchner

R

stego object ∈ Zn predictor for category C ∈ {R, 4N, 4D, 2H, 2V} embedding rate vector of weights

I

aggregation to a combined ˆ is equivalent to estimate p assigning weights

living knowledge WWU Münster

I

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

9 /16

Experimental Setup

10, 000 BOSSBase grayscale images (size: 512 × 512), sampled onto a Bayer grid to apply plain bilinear CFA interpolation

living knowledge WWU Münster

I

Matthias Kirchner

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

9 /16

Experimental Setup

10, 000 BOSSBase grayscale images (size: 512 × 512), sampled onto a Bayer grid to apply plain bilinear CFA interpolation I 3, 400 raw color image patches (size: 512 × 512) from the Dresden Image Database (Nikon D70), each processed with dcraw bilinear interpolation and proprietary content-adaptive Adobe Lightroom interpolation

living knowledge WWU Münster

I

Matthias Kirchner

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

9 /16

Experimental Setup

10, 000 BOSSBase grayscale images (size: 512 × 512), sampled onto a Bayer grid to apply plain bilinear CFA interpolation I 3, 400 raw color image patches (size: 512 × 512) from the Dresden Image Database (Nikon D70), each processed with dcraw bilinear interpolation and proprietary content-adaptive Adobe Lightroom interpolation I

uniform LSB embedding

I

exclude covers with >5 % flat blocks (size: 3 × 3 )

Matthias Kirchner

living knowledge WWU Münster

I

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

10 /16

Steganalysis Results (I) – Estimation 0.1

plain bilinear interpolation, green channel

MAE

0.05

0.005 4N

R 4N LS8

4N LS8 global KB8

0.001

0

0.1

0.2

0.3

embedding rate p

Matthias Kirchner

0.4

0.5

living knowledge WWU Münster

0.01

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

11 /16

Steganalysis Results (II) – Estimation 0.1

plain bilinear interpolation, red channel

MAE

0.05

0.005 4D

2V 4D LS8

R 2V LS8

LS8

global KB8 0.001

0

0.1

0.2

0.3

embedding rate p

Matthias Kirchner

0.4

0.5

living knowledge WWU Münster

0.01

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

12 /16

Steganalysis Results (III) – Estimation 0.1

dcraw bilinear interpolation, green channel

MAE

0.05

0.005 4N

R 4N LS8

4N LS8 global KB8

0.001

0

0.1

0.2

0.3

embedding rate p

Matthias Kirchner

0.4

0.5

living knowledge WWU Münster

0.01

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

13 /16

Steganalysis Results (IV) – Detection increasing mismatch between CFA modelling assumptions and reality lets FKB8 gain advantage (p = 0.01)

F

bilinear

adaptive

plain N=7,408

dcraw N=3,316

Lightroom N=3,166

FP50 EER

FP50 EER

FP50

0.23 0.33 0.26 0.34

0.08 0.19 0.09 0.20

0.15 0.20 0.10 0.16

0.19 0.30 0.11 0.23

EER

Standard WS (KB8) FKB8 FLS8

0.35 0.41 0.38 0.43

Proposed CFA-WS (4N) F4N FLS8

Matthias Kirchner

0.01 0.05 0.01 0.04

green channel

living knowledge WWU Münster

I

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

14 /16

Summary and Outlook color image steganography is hard

living knowledge WWU Münster

I

Matthias Kirchner

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

14 /16

Summary and Outlook color image steganography is hard—and largely unexplored

living knowledge WWU Münster

I

Matthias Kirchner

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

14 /16

Summary and Outlook color image steganography is hard—and largely unexplored

I

good news: substantial steganalysis performance boosts hinge on sufficient information about CFA interpolation function

living knowledge WWU Münster

I

Matthias Kirchner

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

14 /16

Summary and Outlook I

color image steganography is hard—and largely unexplored

good news: substantial steganalysis performance boosts hinge on sufficient information about CFA interpolation function I bad news: image forensics research

Matthias Kirchner

living knowledge WWU Münster

I

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

14 /16

Summary and Outlook I

color image steganography is hard—and largely unexplored

good news: substantial steganalysis performance boosts hinge on sufficient information about CFA interpolation function I bad news: image forensics research I good news: counter-forensics research

Matthias Kirchner

living knowledge WWU Münster

I

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

14 /16

Summary and Outlook I

color image steganography is hard—and largely unexplored

good news: substantial steganalysis performance boosts hinge on sufficient information about CFA interpolation function I bad news: image forensics research I good news: counter-forensics research I join forces?

Matthias Kirchner

living knowledge WWU Münster

I

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor

14 /16

Summary and Outlook I

color image steganography is hard—and largely unexplored

good news: substantial steganalysis performance boosts hinge on sufficient information about CFA interpolation function I bad news: image forensics research I good news: counter-forensics research I join forces? I

come up with plausible communication channels for grayscale images?

Matthias Kirchner

living knowledge WWU Münster

I

Plausible Grayscale Images?

Plausible Grayscale Images?

W ESTFÄLISCHE W ILHELMS -U NIVERSITÄT M ÜNSTER

Steganalysis in Technicolor* Boosting WS Detection of Stego Images from CFA-Interpolated Covers

Thanks for your attention!

*Similarities with existing companies and trademarks are accidental.