Stochastic thermodynamics

Report 7 Downloads 110 Views
London, July 2013

Stochastic thermodynamics and the role of hidden slow degrees of freedoms

Udo Seifert II. Institut f¨ ur Theoretische Physik, Universit¨ at Stuttgart

Review: U.S., Rep. Prog. Phys. 75 126001, 2012.

1

• Intro on stoch th’dynamics • Hidden slow degrees of freedom – ... and the fluctuation theorem – ... in a molecular motor – ... in cellular sensing (i.e., in a bipartite Markov process)

2

• Stochastic thermodynamics for small systems

W λ0

T, p

λt

driving: mechanical

(electro)chemical

(bio)chemical

– First law: how to define work, internal energy and exchanged heat? – fluctuations imply distributions:

p(W ; λ(τ )) ...

– entropy: distribution as well?

3

• Stochastic thermodynamics

applies to such systems where

– non-equilibrium is caused by mechanical, hydrodyn. or chemical forces – ambient solution/reservoirs provides thermal bath(s) of well-defined Ti and µi – “all” slow variables are observed

• Main idea:

Energy conservation (1st law) and entropy production (2nd law) along a single stochastic trajectory

• Precursors: – notion “stoch th’dyn” by Nicolis, van den Broeck mid ‘80s ( on ensemble level) – fluct’theorem: Evans, Cohen, Galavotti, Kurchan, Lebowitz & Spohn ’90s – stochastic energetics (1st law) by Sekimoto late ‘90s – non-eq work theorems by Jarzynski and Crooks late ’90’s – quantities like stochastic entropy by Crooks, Qian, Gaspard in early ’00s – ...

4

• Paradigm for mechanical driving: V (x, λ) x1

f (λ)

x4 x6 x3

x0

λ(τ )

x5 x2

x

λ(τ )

– Langevin dyn’s

x˙ = µ [−V ′(x, λ) + f (λ)] +ζ

– external protocol λ(τ ) • First law [(Sekimoto, 1997)]: – applied work:

111111111111111 000000000000000 000000000000000 111111111111111 000000000000000 111111111111111 000000000000000000000000000000 111111111111111111111111111111 000000000000000 111111111111111 000000000000000000000000000000 111111111111111111111111111111 000000000000000 111111111111111 000000000000000000000000000000 111111111111111111111111111111 000000000000000 111111111111111 000000000000000000000000000000 111111111111111111111111111111 000000000000000 111111111111111 V (x, λ) 000000000000000000000000000000 111111111111111111111111111111 000000000000000 111111111111111 000000000000000000000000000000 111111111111111111111111111111 000000000000000 111111111111111 000000000000000000000000000000 111111111111111111111111111111 000000000000000 111111111111111 000000000000000000000000000000 111111111111111111111111111111 000000000000000000000000000000 111111111111111111111111111111 000000000000000000000000000000 111111111111111111111111111111

|

{z F (x,λ)

}

hζζi = 2µ kB T δ(...) | {z } (≡1)

dw = du + dq

– internal energy:

dw = ∂λV (x, λ)dλ + f (λ)dx du = dV

– dissipated heat:

dq = dw − du = F (x, λ)dx = T dsm

5

• Experimental illustration: Colloidal particle in V (x, λ(τ )) [V. Blickle, T. Speck, L. Helden, U.S., C. Bechinger, PRL 96, 070603, 2006]

– work distribution – non-Gaussian distribution ⇒ – Langevin valid beyond lin response [T. Speck and U.S., PRE 70, 066112, 2004]

6

• Stochastic entropy

[U.S., PRL 95, 040602, 2005]

– Fokker-Planck equation ∂τ p(x, τ ) = −∂xj(x, τ ) = −∂x (µF (x, λ) − µ∂x) p(x, τ ) – Common non-eq ensemble entropy

[kB ≡ 1]

R

S(τ ) ≡ − dx p(x, τ ) ln p(x, τ ) – Stochastic entropy for an individual trajectory x(τ ) s(τ ) ≡ − ln p(x(τ ), τ )

with hs(τ )i = S(τ )

Rt – ∆stot ≡ ∆sm+∆s = 0 dτ x(τ ˙ )ν(x(τ )) [with ν(x) ≡ hx|xi ˙ = j(x)/p(x)]

– hexp[−∆stot]i = 1 ⇒ h∆stot i ≥ 0 ∗ arbitrary initial state, driving, length of trajectory ∗ cf. Jarzynski relation (PRL ’97)

hexp[−W ]i = exp[−∆F ]

7

• NESSs: Examples and common characteristics

f (λ)

111111111111111 000000000000000 000000000000000 111111111111111 000000000000000 111111111111111 000000000000000000000000000000 111111111111111111111111111111 000000000000000 111111111111111 000000000000000000000000000000 111111111111111111111111111111 000000000000000 111111111111111 000000000000000000000000000000 111111111111111111111111111111 000000000000000 111111111111111 000000000000000000000000000000 111111111111111111111111111111 000000000000000 111111111111111 V (x, λ) 000000000000000000000000000000 111111111111111111111111111111 000000000000000 111111111111111 000000000000000000000000000000 111111111111111111111111111111 000000000000000 111111111111111 000000000000000000000000000000 111111111111111111111111111111 000000000000000 111111111111111 000000000000000000000000000000 111111111111111111111111111111 000000000000000000000000000000 111111111111111111111111111111 000000000000000000000000000000 111111111111111111111111111111

– Time-independent driving beyond linear response regime – Broken detailed-balance – Persistent “currents” with permanent dissipation

8

• Fluctuation theorem p(−∆stot)/p(∆stot ) = exp(−∆stot) long-time limit: Evans et al (1993), Gallavotti & Cohen (1995), Kurchan (1998), Lebowitz & Spohn (1999) ...

finite times: U.S., PRL’05

– experimental data [Speck, Blickle, Bechinger, U.S., EPL 79 30002 (2007)] f (λ)

~ a)

0 -50 -100 -150 -200 -250

t=2s

0

t=20s

200

b)

600

0 -50 -100 -150 -200 -250

t=2s

0

400

200

800

t=20s

400

600

800

1000

111111111111111 000000000000000 000000000000000 111111111111111 000000000000000 111111111111111 000000000000000000000000000000 111111111111111111111111111111 000000000000000 111111111111111 000000000000000000000000000000 111111111111111111111111111111 000000000000000 111111111111111 000000000000000000000000000000 111111111111111111111111111111 000000000000000 111111111111111 000000000000000000000000000000 111111111111111111111111111111 000000000000000 111111111111111 V (x, λ) 000000000000000000000000000000 111111111111111111111111111111 000000000000000 111111111111111 000000000000000000000000000000 111111111111111111111111111111 000000000000000 111111111111111 000000000000000000000000000000 111111111111111111111111111111 000000000000000 111111111111111 000000000000000000000000000000 111111111111111111111111111111 000000000000000000000000000000 111111111111111111111111111111 000000000000000000000000000000 111111111111111111111111111111

t=21.5

1000

total entropy production ∆stot [kB]

9

• F’theorem and slow hidden degrees of freedom [J. Mehl, B. Lander, C. Bechinger, V. Blickle and U.S., PRL 108, 220601, 2012]

111111111111111 000000000000000 000000000000000 111111111111111 000000000000000 111111111111111 0000000000000000000000000000000 1111111111111111111111111111111 000000000000000 111111111111111 0000000000000000000000000000000 1111111111111111111111111111111 000000000000000 111111111111111 0000000000000000000000000000000 1111111111111111111111111111111 000000000000000 111111111111111 0000000000000000000000000000000 1111111111111111111111111111111 000000000000000 111111111111111 V (x, λ) 0000000000000000000000000000000 1111111111111111111111111111111 000000000000000 111111111111111 0000000000000000000000000000000 1111111111111111111111111111111 000000000000000 111111111111111 0000000000000000000000000000000 1111111111111111111111111111111 000000000000000 111111111111111 0000000000000000000000000000000 1111111111111111111111111111111 0000000000000000000000000000000 1111111111111111111111111111111 0000000000000000000000000000000 1111111111111111111111111111111

dτ [x˙1ν1(x1, x2) + x˙2ν2(x1, x2)]

f (λ)

111111111111111 000000000000000 000000000000000 111111111111111 000000000000000 111111111111111 0000000000000000000000000000000 1111111111111111111111111111111 000000000000000 111111111111111 0000000000000000000000000000000 1111111111111111111111111111111 000000000000000 111111111111111 0000000000000000000000000000000 1111111111111111111111111111111 000000000000000 111111111111111 0000000000000000000000000000000 1111111111111111111111111111111 000000000000000 111111111111111 V (x, λ) 0000000000000000000000000000000 1111111111111111111111111111111 000000000000000 111111111111111 0000000000000000000000000000000 1111111111111111111111111111111 000000000000000 111111111111111 0000000000000000000000000000000 1111111111111111111111111111111 000000000000000 111111111111111 0000000000000000000000000000000 1111111111111111111111111111111 0000000000000000000000000000000 1111111111111111111111111111111 0000000000000000000000000000000 1111111111111111111111111111111

+1

(a)

with ν1(x1, x2) ≡ hx˙1|x1, x2i obeys FT

p(∆stot )/p(−∆stot ) = exp ∆stot

+-

min.

f1

R

pR

0,1500 0,1650 0,1800 0,1950 0,2100 0,2250 0,2400 0,2550 0,2700 0,2850 0,3000

max.

0

0

x1 B

(b)

G=0 -1 +1

G x2

f2 0

– suppose x2 is hidden:

+-

pR

0

R

ν ˜1(x1) ≡

ν(x1, x2)p(x2|x1)dx2

– apparent entropy production

potential (units of kBT)

(c)

R

G=300

600

U1

300

U2

0

-300 -600 0

x1, x2 (pR)

+1

(d)

G=1150 -1

-1

0

x1 (pR)

Rt ∆˜ stot ≡ 0 dτ x˙1ν ˜1(x1)

-1 +1

0

-1

x (pR)

0

x2

f (λ)

x (pR)

∆stot ≡

Rt

x1

obeys FT ?? 10

+1

x (pR)

– total entropy production in the NESS

• Experimental data – with and without coupling

6 4 2 0 -3

-2

-1

0

1

2

3

3 2

3

(c)

~ ln[p(Ds )/p(-Ds~tot)] tot

ln[p(Ds~tot)/p(-Ds~tot)]

-2

p(Ds~tot) ( 10 )

8

[rarely:]

1 0 -1 -2 -3 -3

-2

-1

0

1

2

3

0 -1 -2

(a) -2

-1

0

1

2

3

~

s

Dstot

1

-3 -3

~ D tot

~

2

Dstot

– slope α 1,1

slope a

1,0 0,9 0,8 0,7 0,6

(a) 0

(b) 100

200

G

300

0,5

1,0

1,5

2,0

t (s)

11

• Theory for

f (σ) ≡ ln[p(σ)/p(−σ)]

– for small t :

with

f (σ) ≈ σ + t1/2g(σ) + O(t):

σ ≡ ∆˜ stot FT universal

– for any t is f (σ) asymmetric by construction ∗ σ≪1: ∗ σ≫1:

f (σ) ≈ α(t)σ + γ(t)σ 3 + ... (i)

! R

1=

dσ p(σ) exp[−f (σ)]

(ii) if p(σ) ≥ (i)+(ii)

=⇒

Gaussian for |σ| >> 1

linear slope expected, but typically α(σ → 0) 6= α(σ → ∞)

12

• F1-ATPase and the fluctuation theorem [K. Hayashi, ... H. Noji, PRL 104, 218103 (2010)]

– kinetics vs thermodynamics – first law? – efficiency(ies)?

13

• F1-ATPase and the fluctuation theorem

– Γθ˙ = N + ζ

hζ1ζ2) = 2ΓkB T δ(τ1 − τ2)

⇒ ln[p(∆θ)/p(−∆θ)] = N ∆θ/kB T independent of friction coefficient

cf our two-ring system: 1,1

slope a

– cf f’theorem

1,0 0,9 0,8 0,7

ln[p(∆stot )/p(−∆stot )] = ∆stot/kB

0,6

(a) 0

(b) 100

200

G

300

0,5

1,0

1,5

t (s)

14

2,0

• Hybrid model

[E. Zimmermann and U.S., New J. Phys. 14, 103023, 2012]

– probe particle ∗ x˙ = µ(−∂y V (y) + f ex) + ζ

with

y(τ ) ≡ n(τ ) − x(τ )

– motor ∗ w+/w− = exp[∆µ − V (n + d, x) − V (n, x)] ∗ local detailed balance condition

15

• First law (i) probe

−f ex∆x

=

∆qp + ∆V|p

Sekimoto ’97

(ii) motor

0

=

∆qm + ∆V|m + ∆Esol

U.S., EPJE 34 26, 2011

mean

−f exv

=

˙p + Q ˙ m + ∆E ˙ sol Q

∆Esol = − ∆µ + T ∆Ssol



˙ − f exv ∆µ

=

˙p + Q

˙ m + T S˙ sol Q

| {z } not distinguishable

16

• Efficiencies – Thermodynamic efficiency

[Parmeggiani et al, PRE 1999]

˙ η ≡ f exv/∆µ – for f ex = 0:

pseudo efficiency

[Toyabe et al, PRL 2010]

˙ p/∆µ ˙ ηQ ≡ Q

4 4 4 4

40

∆µ

∆µ

17

• Experimental determination of ηQ [S. Toyabe et al, PRL 104, 198103 (2010)]

– Harada-Sasa relation ˙ P = v2 + µQ

Z

[PRL 2006]

dω[Cx˙ (ω) − 2kB T ReRx˙ (ω)]

from violation of fluc-diss-theorem

18

• Comparison to experiment

Θ+=0.1, Θ+=0.01, Exp.

– quite reasonable agreement for small θ+ – future: substeps of 90 + 30 degrees

19

• Measuring dissipation in a NESS [B. Lander, J. Mehl, V. Blickle, C. Bechinger and U.S. PRE 86, 030401, 2012]

– Harada Sasa: R −1 2 −1 dω[Cx˙ (ω) − 2kB T ReRx˙ (ω)] hqi ˙ =µ v +µ

∗ Rx˙ difficult to measure – heat production along a trajectory: D

E

hqi ˙ = µ−1 ν 2(x(t))

∗ trajectories x(t) from experiments ∗ ν(x) ≡ hx|xi ˙ from x(t)

20

• Classical non-autonomous information machines:

– Maxwell’s demon (1867)

– Szilard engine (1929)

but: Landauer’s principle (erasure of 1 bit of information costs kBT ln 2) recent theoretical developments: [Sagawa and Ueda PRL 2010, Horowitz and Parrondo EPL+NJP 2011, Berut et al Nature 2012, Mandal and Jarzynski PNAS 2012, Schaller and Esposito, EPL 2012, ....]

21

• Efficency of an information machine [M. Bauer, D. Abreu and U.S.; EPL 94 10001, 2011, J. Phys. A 45, 162001, 2012, PRL 108 030601, 2012 ]

* efficiency

(i) measurement (with error ym ) yields information: I

m) ≡ ln p(x|x eq p (x)

(ii) subsequent optimization of V (x, λ(τ )) extracts work W out

0 ≤ η ≡ W out /hIi ≤ 1

cf. hexp[wout − I )]i = 1 [Sagawa and Ueda, PRL’08]:

22

• Information and entropy production in cellular sensing [AC Barato, D Hartich and U.S., PRE 87, 042104, 2013, and 1306.1698]

– Berg & Purcell, – groups headed by Wingreen, Bialek, Rein ten Wolde, Vergassola ... – Lan et al, Nature Phys. 2012; Mehta and Schwab PNAS 2012]

Information about an external process {X(t)} (conc’ of a nutrient) is recorded by an internal variable {Y (t)} (conc’ of phosph’d protein) Q: Is the rate of information I acquired about {X(t)} related to the thermodynamic cost σ of maintaining the sensory network?

23

• Toy model γ XA YA

γ k−

k+

XB YA

XA YB

k+ γ γ

k−

XB YB

– external time series X(t) alternates between XA and XB – internal “record” Y (t) alternates between YA and YB – discretize time in steps τ – entropy rates

∗ hX,Y

P

P αW αβ (τ ) ln W αβ (τ ) P ≡ limN →∞ S(X 1, Y 1 , X 2, Y 2....X n, Y n)/N = −(1/τ ) αβij Piα Wijαβ (τ ) ln Wijαβ (τ )

∗ hX ≡ limN →∞ S(X 1 , X 2, ....X n)/N = −(1/τ )

αβ

∗ hY =??

– rate of mutual information I≡hX +hY −hX,Y

24

• Bounds on entropy rate – S(Y n+1|Y n, ..., Y 1, X 1) ≤ hY ≤ S(Y n+1|Y n, ...Y 1) – in limit τ → 0 upper and lower bounds for different n converge: –

P u I =

P α α ¯ ij αi Pi j6=i wij /w

P β with w ¯ij ≡ β P (β|i)wij

γ XA YA

XA YB

4

k+ γ γ

5

XB YA

γ k−

k+

I l =0

k−

First bounds Fifth bounds Ninth bounds Simulation

σ (u) I I

3

3

2

1

XB YB

1 0 0

0.01

τ

0.03

γ = 1, k− = 5, k+ = 25

0 0

5

10

15

20

k-

σ I possible

25

25

• A thermodynamically consistent model σ (u) I I

4

k on

off Y

on Y

k off

ω+ ω −

ω+ ω − κ+ κ−

a κ + aκ − k on

off Y*

2

on Y*

k off

0

1

10

a

100

I≡hX −hY −hX,Y (a)κ+

ω+

(a)κ−

ω−

⇀ − ⇀ Y + AT P − ↽ − Y + ADP + Pi ↽ −− − − Y ∗ + ADP − enzymatic enhancement a ∆µ = kB T ln(κ+ ω+ /κ− ω−)

rate of mutual information σ = th’dynamic entr’ prod’n I > σ

possible

26

• Intro on stoch th’dynamics

T. Speck

• Hidden slow degrees of freedom – ... and the fluctuation theorem B. Lander, J. Mehl, V. Blickle, C. Bechinger

– ... in a molecular motor

E. Zimmermann

– ... in cellular sensing (i.e., in a bipartite Markov process) AC Barato, D. Abreu, D. Hartich

27