Supplementary Materials

Report 37 Downloads 195 Views
Supplementary Materials

to accompany

Crystal Structures, Optical Properties and Effective Mass Tensors of CH 3 NH 3 PbX 3 (X=I and Br) Phases Predicted from HSE06 by

Jing Feng1 and Bing Xiao2

1. School of Engineering and Applied Science, Harvard University, Cambridge, MA 02138, USA 2. Department of Physics, College of Science and Engineering, Temple University, Philadelphia, PA, 19122, USA.

Supporting Information Placeholder

(Dated: FEB 27, 2014)

1

1 Details and methods All first principles calculations1 were conducted using the plane wave basis in CASTEP code 2. The normalconserving type pesudopotentials (NCPPs)3 within the frozen core approximation were employed in our work, i.e., H1s, C2s2p, N2s2p, I5s5p, Br4s4p and Pb6s6p. Note that the scalar-relativistic effects have been included in the construction of standard Pb NCPP. The remaining non-relativistic effect turns on the spin-orbital coupling interaction which is beyond the capability of any plane wave code using NCPPs. Therefore, the spin-orbital coupling induced mass splitting of carriers (holes or electrons) near the band extremes was completely neglected. The Monkhorst-Pack type k-meshes used in our calculations were 10 × 8 × 10 and 8 × 8 × 10 for orthorhombic and tetragonal phases, respectively. The kinetic energy cutoff was set to 900 eV.

2 Lattice parameters and band gap of CH 3 NH 3 PbX 3 (X= I and Br) compounds In Table s1, we show the optimized structural parameters of tetragonal and orthorhombic CH 3 NH 3 PbX 3 (X= I and Br) phases. The computed values of them are also compared with experimental results. In our calculations, the dispersion interactions were computed from an empirical pair-wise corrections proposed by Grimme

4

in

terms of DFT+D2 scheme. The exchange-correlation functional of DFT part was computed by Perdew-BurkeErnzerhof generalized gradient approximation (PBE-GGA) 5. The results shown in Table.s1 indicate that for the obtained equilibrium cell volumes, PBE overestimates them significantly, compared to experimental values. Meanwhile, the PBE+D2 method shrinks the cell volume, but it is only slightly more accurate than PBE. In some cases, the optimized the cell volumes from Local-density approximation (LDA)1 are surprisingly close to experimental results, which are due to the well-known overbinding error in the local density approximation. In Ref 6, the computed lattice constants of MAPbI 3 by nonlocal van der Waals functional optB86-vdW are in excellent agreement with experiments, implying the intrinsic flaw of applying the empirical pair-wise corrections in the structural predictions for van der Waals bound solids.

2

Table s1: The optimized structural parameters and fundamental band gaps of T- and O-MAPbX 3 (X = I and Br) structures by different DFT methods. The computed values are compared to experimental results.

MAPbI 3

MAPbBr 3

MAPbI 3

MAPbBr 3

a

Ref. 11, 17;

b

Ref. 12, 19;

Tetragonal

Tetragonal

Orthorhombic

Orthorhombic

LDA

GGA

PBE+D2

HSE06

Expa.

Expb.

a

8.7312

8.887

8.8

8.8

8.8

8.855

c

12.9698

13.0204

13.0475

13.0475

12.685

12.659

V

1004.39

1028.33

1010.4

1010.4

982.33

992.6

gap

0.98

1.89

1.81

1.69

1.633

1.66

a

8.4

8.4

8.6

8.6

8.3381

8.322

c

12.3217

12.5153

12.3126

12.3126

11.8587

11.832

V

869.41

883.08

910.64

910.64

824.4632

819.4

gap

0.54

2.26

2.43

2.34

2.258

2.337

a

8.375

9.0289

8.871

8.871

8.8362

8.861

b

12.2468

13.0822

13.1254

13.1254

12.5804

8.581

c

9.0167

8.6362

8.636

8.636

8.5551

12.62

V

924.82

1020.09

1005.54

1005.54

951.01

959.5

gap

0.853

2.07

1.96

1.63

1.633

a

8.0505

8.493

8.015

8.015

7.979

b

11.3536

12.1899

12.341

12.341

11.849

c

8.3754

8.056

8.522

8.522

8.58

V

765.54

834.02

842.98

842.98

811.1804

gap

0.99

2.37

2.344

2.31

2.258

2.337

3 Electronic structures of CH 3 NH 3 PbX 3 (X= I and Br) compounds The electronic structures of T- and O-phases of MAPbX 3 were calculated using HSE06 4 in this work. Note that all calculations for hybrid functional were carried out on the top of PBE+D2 structures. The obtained band dispersions of T- and O-MAPbX 3 (X= I and Br) are illustrated in Figure s1. The highest occupied and the lowest unoccupied bands are highlighted using red and blue colors in the graph for each structure. All computed structures exhibit the direct band gap at Γ-point in the Brillouin zone. The band gaps of them are indicated in

3

Figure s1. Meanwhile, the values are given in Table.s1. We have compared the computed band gaps of T- and OMAPbX 3 (X= I and Br) to those experimental values and the results by HSE06 shows the best results for all these compounds. PBE accidently predicts the reasonable band gaps for MAPbBr 3 in tetragonal and orthorhombic phases. In other two structures of MAPbI 3 , PBE even overestimates the fundamental band gaps. Meanwhile, LDA underestimates the band gaps for all structures. One should note that in the framework of DFT, the fundamental band gap is not a ground state property of condensed phase; therefore, even within the exact exchange-correlation functional, the Kohn-Sham single particle band gap is still not exactly the same as the physical band gap, missing the derivative continuity in the exchange-correlation functional at the integer number of electrons. In other words, the observed good agreement of PBE band gaps with experimental values in some MAPbX 3 structures is merely coincidence7, 8. Band structure of O-MAPbI3

Band structure of T-MAPbI3

6

6 Violet 3.2 eV

Violet 3.2 eV

4

Energy ( eV )

Energy ( eV )

4

2

Gap = 1.627 eV

Red 1.6 eV

0

-2

(0.5,0,0)

Gap = 1.69 eV

-4

G (0,0,0)

Z

Q

X

(0,0.5,0) (0,0.5,0.5) (0.5,0.5,0.5)

U (0,0,0.5)

A

G (0,0,0)

(0.5,0,0)

G

Z

(0,0,0)

Band structure of O-MAPbBr3 Violet 3.2 eV

U (0,0,0.5)

G (0,0,0)

Violet 3.2 eV

4

Energy ( eV )

Energy ( eV )

X

6

4

2

Gap = 2.31 eV

Red 1.6 eV

0

-2

2

Gap = 2.34 eV Red 1.6 eV

0

-2

-4

A

Q

(0,0.5,0) (0,0.5,0.5) (0.5,0.5,0.5)

Band structure of T-MAPbBr3

6

(0.5,0,0)

Red 1.6 eV

0

-2

-4

A

2

-4

G (0,0,0)

Z

Q

X

(0,0.5,0) (0,0.5,0.5) (0.5,0.5,0.5)

U (0,0,0.5)

G

A

(0,0,0)

(0.5,0,0)

G (0,0,0)

Z

Q

X

(0,0.5,0) (0,0.5,0.5) (0.5,0.5,0.5)

U (0,0,0.5)

G (0,0,0)

Figure. s1: The band dispersions of T- and O-MAPbX 3 (X = I and Br) structures computed from HSE06. The fundamental band gaps of them are direct at G point.

4

The densities of states of T- and O-MAPbX 3 structures are shown in Figure s2. Besides those atoms, the bonding orbitals of C-N pair and (PbX 3 )- can be explained using the molecule orbitals of a hetero-atomic pair in the quantum chemistry 8. 60

60

O-MAPbI3

40

30

20

10

40

30

20

10

0

0 -10

-5

0

5

Energy ( eV )

-10

10

60

-5

0

Energy ( eV )

5

10

60

O-MAPbBr3

MA Br Pb

T-MAPbBr3

MA Br Pb

50

Density of States ( eV . cell-1 )

50

Density of States ( eV . cell-1 )

MA I Pb

50

Density of States ( eV . cell-1 )

50

Density of States ( eV . cell-1 )

T-MAPbI3

MA I Pb

40

30

20

10

0

40

30

20

10

0

-10

-5

0

5

Energy ( eV )

10

-10

-5

0

Energy ( eV )

5

10

Figure. s2: The computed densities of states of T- and O-MAPbX 3 (X = I and Br) structures

4 Effective mass of electrons and holes in of transport CH 3 NH 3 PbX 3 (X= I and Br) compounds Table s2: The computed effective masses of holes and electrons in three principal directions for T- and O-MAPbX 3 (X = I and Br) structures using HSE06. Hole(m h *)

Electron(m e *)

[100]

[010]

[001]

[100]

[010]

[001]

MAPbI 3

Tetragonal

0.7125

0.7125

0.361

2.65

2.65

0.76

MAPbBr 3

Tetragonal

0.3053

0.3053

0.4598

1.14

1.14

0.91

MAPbI 3

Orthorhombic

1.1844

11.979

1.048

0.56

1.38

0.82

MAPbBr 3

Orthorhombic

0.3386

0.7777

0.3561

1.11

2.13

1.02

5

5 The atomic positions of all constituting elements in T- and O- MAPbX 3 (X = I and Br) phases Table s3: The atomic coordinates of Pb, I, N, C and H elements in tetragonal-MAPbI 3 structure. x

y

z

g

Site

1

I

I1

0.1865

0.01383

0.18556

1

8d

2

H

H2

0.39555

0.31826

0.38481

1

9d

3

H

H3

0.59173

0.314

0.58186

1

10d

4

Pb

Pb4

0.5

0

0

1

4b

5

I

I5

0.48258

0.25

-0.05115

1

4c

6

C

C6

0.91185

0.25

0.04446

1

5c

7

H

H7

0.33406

0.25

0.55344

1

6c

8

H

H8

0.64777

0.25

0.42545

1

7c

9

N

N9

0.93049

0.75

0.01491

1

8c

Table s4: The atomic coordinates of Pb, Br, N, C and H elements in tetragonal-MAPbBr 3 structure. x

y

z

g

Site

1

Br

I1

0.18012

0.00585

0.18741

1

8d

2

H

H2

0.46097

0.32312

0.36075

1

9d

3

H

H3

0.54046

0.31737

0.63524

1

10d

4

Pb

Pb4

0.5

0

0

1

4b

5

Br

I5

0.48224

0.25

-0.03909

1

4c

6

C

C6

0.93886

0.25

0.06943

1

5c

7

H

H7

0.31173

0.25

0.4772

1

6c

8

H

H8

0.68417

0.25

0.52933

1

7c

9

N

N9

0.94145

0.75

0.06412

1

8c

Table s5: The atomic coordinates of Pb, I, N, C and H elements in orthorhombic-MAPbI 3 structure. x

y

z

g

1

Pb

Pb1

0

-0.00141

0

1a

2

Pb

Pb2

0.50005

0.5022

0.50039

1a

3

Pb

Pb3

-0.00147

-0.0021

0.50042

1a

4

Pb

Pb4

0.49997

0.50115

0

1a

5

I

I5

0.20442

0.29553

0

1a

6

I

I6

0.7967

0.7032

0

1a

7

I

I7

0.29668

0.20328

0.50241

1a

8

I

I8

0.70295

0.20538

-0.00302

1a

9

I

I9

0.29487

0.79736

-0.00344

1a

10

I

I10

0.79407

0.29365

0.49454

1a

11

I

I11

0.20584

0.70544

0.50153

1a

12

I

I12

0.70967

0.7903

0.49203

1a

13

I

I13

0.00321

0.00654

0.24948

1a

14

I

I14

0.50545

0.49655

0.74952

1a

6

15

I

I15

0.00239

0.00654

0.74953

1a

16

I

I16

0.50482

0.49607

0.24946

1a

17

N

N17

0.45714

0.0428

0.265

1a

18

C

C18

0.55874

-0.0588

0.20057

1a

19

C

C19

0.55648

-0.05655

0.70143

1a

20

N

N20

0.45569

0.04421

0.76657

1a

21

C

C21

0.05712

0.55727

0.2654

1a

22

C

C22

0.0586

0.5587

0.76665

1a

23

N

N23

-0.04429

0.45585

0.20106

1a

24

N

N24

-0.04231

0.45781

0.70204

1a

25

H

H25

1.12701

0.62709

0.71411

1a

26

H

H26

1.1302

0.4866

0.81477

1a

27

H

H27

0.98649

0.63022

0.81482

1a

28

H

H28

0.9776

0.3434

0.71629

1a

29

H

H29

0.97445

0.47469

0.62397

1a

30

H

H30

0.84331

0.47775

0.71633

1a

31

H

H31

0.12635

0.62644

0.21374

1a

32

H

H32

0.12923

0.48596

0.31371

1a

33

H

H33

-0.01423

0.62928

0.31376

1a

34

H

H34

-0.02299

0.34208

0.2162

1a

35

H

H35

-0.02636

0.47404

0.12333

1a

36

H

H36

-0.15801

0.47718

0.21624

1a

37

H

H37

0.3863

0.98043

0.31212

1a

38

H

H38

0.38955

1.11042

0.21902

1a

39

H

H39

0.51953

1.11361

0.31214

1a

40

H

H40

0.53585

0.96411

0.11968

1a

41

H

H41

0.53242

0.82315

0.21936

1a

42

H

H42

0.67679

0.96747

0.2194

1a

43

H

H43

0.53319

0.96676

0.62067

1a

44

H

H44

0.5312

0.82462

0.7192

1a

45

H

H45

0.67531

0.96867

0.71924

1a

46

H

H46

0.38564

0.97995

0.81359

1a

47

H

H47

0.38909

1.11085

0.7189

1a

48

H

H48

0.51992

1.11427

0.81358

1a

Table s6: The atomic coordinates of Pb, Br, N, C and H elements in orthorhombic-MAPbBr 3 structure. x

y

z

g

1

Pb

Pb1

0

-0.00248

0

1a

2

Pb

Pb2

0.49999

0.50325

0.50047

1a

3

Pb

Pb3

-0.00224

-0.00333

0.50051

1a

4

Pb

Pb4

0.5001

0.50156

0

1a

5

Br

I5

0.20554

0.29419

0.00114

1a

7

6

Br

I6

0.79614

0.70347

0

1a

7

Br

I7

0.29617

0.20383

0.50332

1a

8

Br

I8

0.70299

0.20746

-0.00429

1a

9

Br

I9

0.29313

0.79772

-0.00505

1a

10

Br

I10

0.79278

0.29214

0.4931

1a

11

Br

I11

0.2078

0.70724

0.50217

1a

12

Br

I12

0.71268

0.78729

0.48962

1a

13

Br

I13

0.00502

0.01044

0.24888

1a

14

Br

I14

0.50869

0.49462

0.74898

1a

15

Br

I15

0.00361

0.01048

0.74902

1a

16

Br

I16

0.50759

0.49378

0.24884

1a

17

N

N17

0.4559

0.04404

0.26608

1a

18

C

C18

0.56046

-0.06057

0.2002

1a

19

C

C19

0.55773

-0.05785

0.70119

1a

20

N

N20

0.45406

0.04579

0.7682

1a

21

C

C21

0.0578

0.55803

0.26647

1a

22

C

C22

0.05977

0.55992

0.76803

1a

23

N

N23

-0.04657

0.45367

0.20042

1a

24

N

N24

-0.04412

0.45608

0.70167

1a

25

H

H25

1.12996

0.63007

0.713

1a

26

H

H26

1.13353

0.48566

0.81758

1a

27

H

H27

0.9855

0.6336

0.81763

1a

28

H

H28

0.97657

0.3393

0.71635

1a

29

H

H29

0.97349

0.47382

0.61996

1a

30

H

H30

0.83914

0.4768

0.71643

1a

31

H

H31

0.12877

0.62892

0.2123

1a

32

H

H32

0.13218

0.48464

0.31613

1a

33

H

H33

-0.01564

0.6323

0.31618

1a

34

H

H34

-0.02441

0.33754

0.21604

1a

35

H

H35

-0.02769

0.47291

0.11909

1a

36

H

H36

-0.16263

0.47587

0.21614

1a

37

H

H37

0.38281

0.98015

0.31479

1a

38

H

H38

0.38661

1.11332

0.21792

1a

39

H

H39

0.51983

1.11711

0.31481

1a

40

H

H40

0.53649

0.96344

0.11553

1a

41

H

H41

0.53304

0.81881

0.2197

1a

42

H

H42

0.68109

0.96682

0.21974

1a

43

H

H43

0.53299

0.96692

0.61673

1a

44

H

H44

0.53121

0.82079

0.71955

1a

45

H

H45

0.6791

0.96862

0.71961

1a

46

H

H46

0.38194

0.97972

0.81679

1a

47

H

H47

0.38572

1.11413

0.71835

1a

48

H

H48

0.5201

1.11795

0.81675

1a

8

References: 1. Hohenberg, P.; Kohn, W., Inhomogeneous Electron Gas. Phys Rev 1964, 136, B864. 2. Segall, M.; Lindan, P.; Probert, M.; Pickard, C.; Hasnip, P.; Clark, S.; Payne, M., First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 2002, 14, 2717. 3. Hamann, D. R., Generalized norm-conserving pseudopotentials. Physical Review B 1989, 40, (5), 2980-2987. 4. Grimme, S., Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry 2006, 27, (15), 1787-1799. 5. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Physical Review Letters 1996, 77, (18), 3865-3868. 6. Wang, Y.; Gould, T.; Dobson, J. F.; Zhang, H.; Yang, H.; Yao, X.; Zhao, H., Density functional theory analysis of structural and electronic properties of orthorhombic perovskite CH 3 NH 3 PbI 3 . Physical Chemistry Chemical Physics 2014, 16, (4), 1424-1429. 7. Mosconi, E.; Amat, A.; Nazeeruddin, M. K.; Gratzel, M.; De Angelis, F., First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications. JOURNAL OF PHYSICAL CHEMISTRY C 2013, 117, (27), 13902-13913. 8. Baikie, T.; Fang, Y. N.; Kadro, J. M.; Schreyer, M.; Wei, F. X.; Mhaisalkar, S. G.; Graetzel, M.; White, T. J., Synthesis and crystal chemistry of the hybrid perovskite (CH 3 NH 3 ) PbI 3 for solid-state sensitised solar cell applications. JOURNAL OF MATERIALS CHEMISTRY A 2013, 1, (18), 5628-5641.

9