Supporting Information DNA Origami Nanoantennas with over ...

Report 15 Downloads 132 Views
Supporting Information

DNA Origami Nanoantennas with over 5000fold Fluorescence Enhancement and Single-Molecule Detection at 25 µM Anastasiya Puchkova, Carolin Vietz, Bettina Wünsch, Enrico Pibiri, Maria Sanz Paz, Guillermo P. Acuna* and Philip Tinnefeld Institute for Physical & Theoretical Chemistry, and Braunschweig Integrated Centre of Systems Biology (BRICS), and Laboratory for Emerging Nanometrology (LENA), Braunschweig University of Technology, 38106 Braunschweig, Germany. *Correspondence to: [email protected]

Sample preparation of DNA origami pillar DNA origami pillar was designed using the CaDNAno software (http://cadnano.org/) (1). For the folding of this structure 10 nM of 8064 nt long single stranded DNA scaffold (M13mp18) and 100 nM of each staple strand (see table S1, purchased from Eurofins Genomics) were mixed in a TE buffer (10 mM Tris, 1 mM EDTA; pH 8.0) containing 14 mM MgCl2. The folding mixture was then annealed following the program presented in table S2. After folding the sample was purified from excess staple strands by filtering in Amicon columns (Amicon Ultra – 0.5 ml, Ultracel®- 100K Membrane, Millipore) with TAE buffer (40 mM Tris, 2 mM EDTA) containing 12 mM MgCl2. The sample was centrifuged 3 times at 16 krcf speed for 5 min at 20°C with buffer replacement after each step. To remove purified origami structures the filter column was flipped into a new tube and centrifuged for 3 min at 1 krcf speed.

S1

Functionalization of gold nanoparticles Gold nanoparticles of 100 nm diameter (BBI solutions) were functionalized with 20T DNAoligonucleotides containing a thiol modification on the 3’ end (Ella Biotech GmbH) following the procedure adapted from Mirkin (2) with minor changes. The nanoparticle oligonucleotide mixture was stirred at 40 °C during the salting procedure. By stepwise adding 1xPBS buffer containing 3.3 M NaCl a final concentration of 750 mM NaCl was reached. For purification from free oligonucleotides the nanoparticle solution was spinned down, the supernatant was pipetted off and the nanoparticle pellet was diluted in 1xPBS containing 10 mM NaCl, 2.11 mM P8709, 2.89 mM P8584, 0.01 % Tween20 and 1 mM EDTA-S. This purification step was repeated 7 times.

Figure S1. “Immobilized reference” refers to the quenching of the fluorophore bound to the DNA origami and immobilized on the surface of a coverslip. Therefore the fluorescence intensity of single ATTO647N was determined at different concentrations of NiCl2 as indicated and referred to the reference in the absence of quencher.

S2

Figure S2. Fluorescence quenching of ATTO647N by NiCl2 on the ensemble level measured in a spectrometer. ATTO647N 3’-labelled oligonucleotides with the following sequence were used: GCG CAT CAT CTG CCA GTT TTC ACC AGG CGT GAG CAA GTC TTG

S3

Figure S3. Photon count rate histogram for the dimer nanoantennas with an ATTO655 fluorophore (red) and an ATTO647N with a NiCl2 concentration of 0.5 mM (black). The enhancement is calculated based on the comparison with a reference that consist of an immobilized DNA origami pillar with the same fluorophore and quencher conditions in the absence of any plasmonic interaction.

S4

Table S1. List of unmodified and modified staples from the 5’ to the 3’ end for the DNA origami pillar. Sequence (5’ to 3’)

Length

Modification

TTAGTTTGAGTGCCCGAGAAATAAAGAAATTGCGTAGAGATA

42

TATGACTTTATACATTTTTTTTTAATGGAAACAGTACACCGT

42

AATAAAACGAACTATGACCCCACCAAGC

28

CTCATCGGGATTGAGTGAGCGAGTAACAACCCGTC

35

CCCAGCTACAATGACAGCATTTGAGGCAAGTTGAGAAATGAA

42

TCATACATTTAATACCGATAGCCCTAAAACATCGAACGTAAC

42

ACGCGGTCCGTTTTTGGGTAAGTGA

25

CTTACGGAACAGTCAGGACGTTGGGAAGAAA

31

GGAACCATACAGGCAAGGCAAATCAAAAAGACGTAGTAGCAT

42

CTAAATCGGTCAGAATTAGCAAAATTAAGCAATAAAATAATA

42

TTTAGCGATACCAACGCGTTA

21

AAGAAAGCTTGATACCGCCACGCATACAGACCAGGCGCTGAC

42

CCCCGCTAGGGCAACAGCTGGCGAAAGGGGGATGTGCTTATT

42

GCCCGAGTACGAGCCGGAAGC

21

CATTTCGCAAATGTCATCTGCGAACGAGAGATTCACAATGCC

42

TATTTAAATTGCAGGAAGATTG

22

AAAGATTACAGAACGGGAGAAGGAAACGTCACCAATGAAACCA

43

ACGTAAGAATTCGTTCTTAGAAGAACTCAAACTATCGGATAA

42

GCGAATCAGTGAGGCCACCGAGTAGTAGCAACTGAGAGTTGA

42

TCGTGCCGGAGTCAATAGTGAATTTGCAGAT

31

TAGCCTCAGAGCATACCCTGT

21

AGCAACAAAGTCAGAAATAATATCCAATAATCGGCTCAGGGA

42

AGGCTTGCGAGACTCCTCAAGAGAAAAGTATTCGGAAC

38

ACCTGACGGGGAAAGCCGGCGAACCAAGTGTCTGCGCGTTGC

42

CCGTAATCAGTAGCGACAGAATCTAATTATTCATTAAAAAGG

42

GAACTGGCTCATTACAACTTTAATCATTCTTGAGATTACTTA

42

GAGTTAAAAGGGTAATTGAGCGCTAATATCAGAGGAACTGAACACC

46

AGTTTCCAACATTATTACATTATAC

25

ACGCGAGAGAAGGCCATGTAATTTAGGCCAGGCTTAATTGAGAATCGC

48

ACTAATGCCACTACGAATAAA

21

CTGTATGGGATTACCGTTAGTATCA

25

TAGCCAGCTTTCATCCAAAAATAAACGT

28

CCTCGTTTACCAGAAACCAAA

21

TTAGCCCTGACGAGAAACACCAGAAATTGGGGTGAATTATTTTAA

45

TGAGTAAAGGATAAGTTTAGCTATATCATAGACCATTAGATA

42

ATTTCCTGATTATCAGATGATGGCTTTAAAAAGACGCTAAAA

42

CCAGCCTCCGATCCTCATGCCGGA

24

ATGAAGGGTAAAGTTCACGGTGCGGCCATGCCGGTCGCCATG

42

S5

TAAGTTGGCATGATTAAAGAA

21

TAATATCAAAGGCACCGCTTCTGGCACT

28

GTCGCAGAAAAACTTAAATTTGCC

24

GTTAAAGGAAAGACAGCATCTGCCTATTTAAGAGGCAGGAGGTTTA

46

AAGGCTCCAAAAGGAGCCTTTATATTTTTTCACGTGCTACAGTCACCCT

49

TAACGACATTTTTACCAGCGCCAAAGAAAGTTACCAGAACCCAAA

45

AAGGGATATTCATTACCGTAATCTATAGGCT

31

TTCGGTCCCATCGCATAGTTGCGCCGACATGCTTTCGAGGTG

42

AATATCGTTAAGAGAGCAAAGCGGATTGTGAAAAATCAGGTCTTT

45

AAATGACGCTAAATGGATTATTTACATTGGCGAATACCTGGA

42

ACCGCCACCCTCAGAACCCGTACTCTAGGGA

31

TTCGGGGTTTCTGCCAGGCCTGTGACGATCC

31

AGTACCGCATTCCACAACATGTTCAGCCTTAAGGTAAAGTAATTC

45

CCCGGTTGATAAAGCATGTCAATC

24

AGTAGGTATATGCGTTATACA

21

CTGGCATTAGGAGAATAAAATGAAGAAACGATTTTTTGAGTA

42

CGAACACCAAATAAAATAGCAGCCAAGTTTGCCTTTAGCGTCAGA

45

TGCTAAATCGGGGAGCCCCCGATTTAGAGCTAGCAGAACATT

42

CGCGCTACAGAGTAATAAAAGGGACATTCTGATAGAACTTAG

42

AAGACAAATCAGCTGCTCATTCAGTCTGACCA

32

TTTTCCAGCATCAGCGGGGCTAAAGAACCTCGTAGCACGCCA

42

ACATAAGTAGAAAAATCAAGAAGCAAAAGAAGATGTCAT

39

CAAAATCACCGGAACCAGAGCCAGATTTTGTCACAATCACAC

42

GCTGTAGTTAGAGCTTAATTG

21

TTATAAGGGTATGGAATAATTCATCAATATA

31

ATAGCGAGAGGCTATCATAACCAAATCCCAAAGAAAATTTCATCCTCAT

49

GCGAAACAAAGTGTAAAACACATGGCCTCGATTGAACCA

39

TTTAGATTCACCAGTCACACGACCGGCGCGTGCTTTCCCAGA

42

CAAGCCCAATAGGAACCACCCTCACCCGGAA

31

AGCTCTTACCGAAGCCCAATA

21

CATTTGAGATAACCCACGAAACAATG

26

AATACCCCAACATTCATCAAAAATAATTCGCGTCT

35

ACGAGCGGCGCGGTCAGGCAAGGCGATTAAGTTGGGTAAAAC

42

TAAAACCGTTAAAGAGTCTGTCCATCCAGAAACCACACAATC

42

TATTACGAATAATAAACAAATCAGATATGCGT

32

GAAGGAGCGGAATTATCATCATATATCATTTACATAGCACAA

42

CCTCGTCTTTCCACCACCGGAACCGCCTCCCTCA

34

AACAAGAGCCTAATGCAGAACGCGC

25

AGAAATCGTTAGACTACCTTTTTAAGGCGTTCTGACCTTTTTGCA

45

AGTTTATTGTCCATATAACAGTTGATTC

28

ATTTGGAAGTTTCATGCCTCAACATGTTTTA

31

S6

GAGAACAATATACAAAATCGCGCAGAGGCGATTCGACAAATCCTTTAAC

49

GTCGCGTGCCTTCGAATTGTCAAAG

25

GAACCGCCACCCTCCATATCATACC

25

CGCGCCGCCACCAGAACAGAGCCATAAAGGTGGAA

35

CAAAGCACTAGATAGCTCCATTCAGGCTGCGCAACTGTCTTG

42

GGCCAACGCGCGGGGAGGGCCCTGTGTTTGA

31

GAGGCCAAGCTTTGAATACCAAGTACGGATTACCTTTTCAAA

42

GGCGAAGCACCGTAATAACGCCAGGGTTTTCCCAGTCATGGG

42

TGAAAATCCGGTCAATAACCTAAATTTTAGCCTTT

35

TATTGAAAGGAATTGAGGTAG

21

GAGCATTTATCCTGAATCAAACGTGACTCCT

31

ATCGGTCAGATGATATTCACAAACCAAAAGA

31

GTAAAACGACGGCCCATCACCCAAATCAGCGC

32

GGCGCAGACGGTCAATCATCGAGACCTGCTCCATGTGGT

39

TTTTTGCGGATGCTCCTAAAATGTTTAGATGAATTTTGCAAAAGAAGTT

49

AAGGCCTGTTTAGTATCATGTTAGCTACCTC

31

CGAGGGTACTTTTTCATGAACGGGGTCATAATGCCGAGCCACCACC

46

AGCTTTCAGAGGTGGCGATGGCCAGCGGGAAT

32

TTGGTAGAACATTTAATTAAGCAAC

25

ACCAGACCGGATTAATTCGAGC

22

GGCAACACCAGGGTCTAATGAGTGAGCTCACAACAATAGGGT

42

ATCGATGCTGAGAGTCTACAAGGAGAGGGAACGCCAAAAGGA

42

ACCAACAAACCAAAATTAACAATTTCATTTGAATTACCGAGG

42

GCGAAAATCCCGTAAAAAAAGCCGTGGTGCTCATACCGGCGTCCG

45

GAATTCGTCTCGTCGCTGGGTCTGCAATCCATTGCAACACGG

42

AATATGCAACTACCATCATAGACCGGAACCGC

32

CCTGCGCTGGGTGGCGAGAAAGGAAGGGAAGGAGCGGGGCCG

42

CAAATTATTCATTTCAATTACCTGAGTA

28

AATTGTGTCGAAATCCGCGGCACACAACGGAGATTTGTATCA

42

TGCGTGTTCAGGTTGTGTACATCG

24

AACCGTGTCATTGCAACGGTAATATATTTTAAATGAAAGGGT

42

TGGCTTTTTACCGTAGAATGGAAAGCG

27

CGTACAGGCCCCCTAACCGTCCCCGGGTACCGAGCGTTC

39

AAGAAAGCGCTGAACCTCAAATATTCTAAAGGAAAGCGTTCA

42

TTCATCGGCATTTTCGGTCATATCAAAA

28

CCTAATTTAACAAACCCTCAATCAATATCTGATTCGCTAATC

42

AAACTCACAGGAACGGTACGCCAGTAAAGGGGGTGAGGAACC

42

AATTTCTTAAACCCGCTTAATTGTATCGTTGCGGGCGATATA

42

GAGAAGGCATCTGCAATGGGATAGGTCAAAAC

32

CCAATGTTTAAGTACGGTGTCCAAC

25

AAATCAGCTCATTTTTTAACCATTTTGTTAAAATTCGCATTA

42

S7

TTTACCAGTCCCGGCCTGCAGCCCACTACGGGCGCACCAGCT

42

CTGAATATAGAACCAAATTATTTGCACGTAAAACAACGT

39

GTAATTAATTTAGAATCTGGGAAGGGCGATCGGTGCGGCAAA

42

TAAAGCCTCCAGTACCTCATAGTTAGCG

28

AGGGAGCCGCCACGGGAACGGATAGGCGAAAGCATCAGCACTCTG

45

TGAGTGTTCCGAAAGCCCTTCACCGCCTAGGCGGTATTA

39

TTGGGCGGCTGATTTCGGCAAAATCCCT

28

CCGACTTGTTGCTAAAATTTATTTAGTTCGCGAGAGTCGTCTTTCCAGA

49

CCATAATGCCAGGCTATCAAGGCCGGAGACATCTA

35

TGACCGCGCCTTAATTTACAATATTTTTGAATGGCTATCACA

42

ACTAAAGAGCAACGTGAAAATCTCCACCCACAACTAAAGGAA

42

AGACAGCAGAAACGAAAGAGGAAATAAATCGAGGTGACAGTTAAAT

46

TTTCCATGGCACCAACCTACGTCATACA

28

TTGCGAATAATATTTACAGCGGAGTGAGGTAAAATTTTGAGG

42

ATAAAGTCTTTCCTTATCACT

21

AGGACAGATGAACGGTGTAACATAAGGGAACCGAAGAAT

39

CAAGCCGCCCAATAGCAAGTAAACAGCCATATTATTTTGCCATAAC

46

AACAACAGGAAGCACGTCCTTGCTGGTAATATCCAGAAACGC

42

ACAACGCCTGTAGCATTTACCGTATAGGAAG

31

CCGTGTGATAAATAACCTCCGGCTGATG

28

AGAATTTTAGAGGAAAACAATATTACCGCCAGCTGCTCATTT

42

AGAACTTAGCCTAATTATCCCAAGCCCCCTTATTAGCGTTTGCCA

45

CATCGAGATAACGTCAAACATAAAAGAGCAAAAGAATT

38

TTACCATTAGCAAGGCCTTGAATTAGAGCCAGCCCGACTTGAGC

44

GACAATTACGCAGAGGCATTTTCGAG

26

AATATTCATTGAATCCATGCTGGATAGCGTCCAAT

35

TTAACTCGGAATTAGAGTAAATCAATATATGTGAGTGATTCT

42

CGTGTCAAATCACCATCTAGGTAATAGATTT

31

TATCAGCAACCGCAAGAATGCCAATGAGCCTGAGGATCTATC

42

GGGATATTGACGTAGCAATAGCTAAGATAGC

31

TAAGTTTACACTGAGTTTCGT

21

ATTGCGTTGCTGTTATCCGCTCACAATTCCAAACTCACTTGCGTA

45

GCTGGCATAGCCACATTATTC

21

CGTACTATGGTAACCACTAGTCTTTAATGCGCGAACTGAATC

42

ACGGGCCGATAATCCTGAGAAGTGTTTTTATGGAGCTAACCG

42

CAAACGGAATAGGAAACCGAGGAATAAGAAATTACAAG

38

TCACAGCGTACTCCGTGGTGAAGGGATAGCTAAGAGACGAGG

42

TAACATCCAATAAATGCAAAGGTGGCATCAACATTATGAAAG

42

CAGCAGCGCCGCTTGTTTATCAGCTTCACGAAAAA

35

TAGCCCGGAATAGGTGTAAGGATAAGTGCCGTCGA

35

AAATGCGGAAACATCGGTTTTCAGGTTTAACGTCAGATTAAC

42

S8

ATTTCAACCAAAAATTCTACTAATAGTTAGTTTCATTTGGGGCGCGAGC

49

TGCTGATTGCCGTTGTCATAAACATCGGGCGG

32

GGCTAAAACTTCAGAAAAGTTTTGCGGGAGATAGAACC

38

GAGTCTGGATTTGTTATAATTACTACATACACCAC

35

ATTGTTATCTGAGAAGAAACCAGGCAAAGCGCCATTCGTAGA

42

CGGAATAGAAAGGAATGCCTTGCTAAACAACTTTCAAC

38

CTAGTCAGTTGGCAAATCAACAGTCTTTAGGTAGATAACAAA

42

AGTCGCCTGATACTTGCATAACAGAATACGTGGCACAGCTGA

42

CACGGCAACAATCCTGATATACTT

24

CCTCATCACCCCAGCAGGCCTCTTCGCTATTACGCCAGTGCC

42

TGAGCAAATTTATACAGGAATAACATCACTTGCCTGAGTCTT

42

AATAGAAAAAAATAAACGTCTGAGAGGAATATAAGAGCAACACTATGAT

49

ATTACGAGATAAATGCCAGCTTTGAGGGGACGACGACAG

39

GCTGGTCTGGTCAGGAGCCGGAATCCGCCGTGAACAGTGCCA

42

CTTGTAGAACGTCAGCGGCTGATTGCAGAGTTTTTCGACGTT

42

ACATAAAGCCCTTACACTGGTCGGGTTAAATTTGT

35

TGCCATCCCACGCAGGCAGTTCCTCATTGCCGTTTTAAACGA

42

GCCAGCAGTTGGGCGCAAATCAGGTTTCTTGCCCTGCGTGGT

42

TACGGCTGGAGGTGCGCACTCGTCACTGTTTGCTCCCGGCAA

42

GAGAGATAGACTTTACGGCATCAGA

25

ATTAGCGGGGTTTTGCTCAGTACCAGGCTGACAACAAGCTG

41

5'-Biotin

TGCCCGTATAAACAGTGTGCCTTCTGGTAA

30

5'-Biotin

AGAAAACGAGAATGACCATAAATCTACGCCCCTCAAATGCTTTA

44

5'-Biotin

ATAACTATATGTAAATGCTTAGGATATAAT

30

5'-Biotin

AGGAATCATTACCGCGTTTTTATAAGTACC

30

5'-Biotin

GATTAGAGAGTACCTTAACTCCAACAGG

28

5'-Biotin

CCTTAAATCAAGATTAGCGGGAGGCTCAAC

30

5'-Biotin

GCATGTAGAAACCAATCCATCCTAGTCCTG

30

5'-Biotin

TGCATTAATGAGCGGTCCACGCTCACTGCGCCACGTGCCAGCAAAAAAAAAAAAAAAAAAAA

62

NP binding

AGCGCAGCTCCAACCGTAATCATGGTCACGGGAAACCTAAAAAAAAAAAAAAAAAAAA

58

NP binding

GCGTCCACTATTCCTGTGTGAAATGCTCACTGCCAAAAAAAAAAAAAAAAAAAA

54

NP binding

TGGTGGTTGTTCCAGTTTGGAACAAAAAAAAAAAAAAAAAAAAA

44

NP binding

GGATGTGGTTTGCCCCAGCAGAAAAAAAAAAAAAAAAAAAA

41

NP binding

CGCTTTCCAGTTAGCTGTTTAAAGAACGTAAAAAAAAAAAAAAAAAAAA

49

NP binding

AGAGAAAATCCAGAGAGTTGCAGCAAATC

29

ATTO647N-3’

Table S2. Detailed folding program for the DNA origami pillar.

S9

temp [°C] time [s] temp [°C] time [s] temp [°C] time [s] temp [°C] time [s]

65 120 52 5400 39 1800 26 120

64 180 51 5400 38 900 25 120

63 180 50 5400 37 480 20 ∞

62 180 49 5400 36 480

61 180 48 5400 35 480

60 900 47 5400 34 480

59 900 46 5400 33 480

58 1800 45 5400 32 480

57 2700 44 4500 31 480

56 3600 43 3600 30 480

55 4500 42 2700 29 120

54 5400 41 1800 28 120

53 5400 40 1800 27 120

References 1. Douglas, S. M.; Marblestone, A. H.; Teerapittayanon, S.; Vazquez, A.; Church, G. M.; Shih, W. M. Nucleic Acids Research 2009, 37, (15), 5001-5006. 2. Mirkin, C.; Letsinger, R.; Mucic, R.; Storhoff, J. Nature 1996, 382, 607−609.

S10