Supporting Information for Efficient storage of drug and cosmetic molecules in bio-compatible MOFs: A molecular simulation study Ilknur Erucar and Seda Keskin* Koc University, Chemical and Biological Engineering, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Turkey *
Corresponding author. Email:
[email protected] Table S1. Structural properties of bio-compatible MOFs† 3D structures MOF name
Bio-MOF1
Bio-MOF11
Bio-MOF12
Organic
Pore
linker
volume
and metals
(cm3/g)
Adenine Zn
Adenine Co
Adenine Co
Surface
PLD
LCD
area
(Å)
(Å)
2
(m /g)
0.55
1069
4.75
5.62
0.44
860
4.59
5.76
0.46
1001
4.75
5.62
S1
Bio-MOF100
Adenine Zn
Bio-MOF-
Adenine
101
Zn
Bio-MOF-
Adenine
102
Zn
CD-MOF1
Cyclodextrin K
CD-MOF-
Cyclodextrin
2
Rb
CD-MOF-
Cyclodextrin
3
Cs
2.64
3673
14.72
20.23
2754
19.56
24.09
3.21
3465
26.28
31.40
0.59
1130
7.17
16.85
0.59
1085
7.14
16.84
0.54
948
6.68
16.15
2.15
S2
Adenine IZUMUM
Cu
Fe MIL-53
MIL-53open1
MIL-100
MIL-101
MOF-74
terephthalate
Fe terephthalate
Fe carboxylate
Cr terephthalate
DOT* Mg
0.42
776
4.64
5.58
1096
5.64
6.13
0.64
1593
7.33
7.83
0.99
1748
9.04
27.91
1.96
3158
14.05
36.15
0.70
1621
10.76
11.64
0.53
S3
NUDKON
RAVVUH
RAVWAO
RAVWES
RAVWIW
RAVWOC
Adenine Zn
DOT* Mg
DOT* Mg
DOT* Mg
DOT* Mg
DOT* Mg
0.43
178
2.34
6.44
1.23
2228
16.38
17.18
1.42
2621
17.51
17.93
1.81
2759
23.63
24.44
2.28
3018
30.14
30.70
2.11
2916
27.56
28.22
S4
RAVWUI
RAVXAP
RAVXET
RAVXIX
DOT* Zn
DOT* Mg
DOT* Mg
DOT* Mg
2.55
2893
36.43
36.79
2.96
3360
34.36
34.86
2.54
2809
38.07
38.23
3.74
3036
53.26
53.58
†Physical properties, such as pore volume, pore-limiting diameter (PLD), largest cavity diameter (LCD), surface area (gravimetric surface area) were calculated using zeo++ software.2 Surface area calculations were performed using a probe radius of 1.86Å. For pore volume calculations, probe radius was set to zero. Measurements were done for bio-MOF-1, -100, -101 and -102 considering dimethylammonium (DMA) cations inside the cell. *DOT: dioxidoterephthalate. Surface area and pore volume of bio-MOF-102 and surface area of NUDKON were estimated using Materials Studio 8.0 software.3
S5
Table S2. Data for comparison of our predicted ibuprofen uptake with the experiments4 and other simulation data5 available in the literature.
MOF name Bio-MOF-1 Bio-MOF-11 Bio-MOF-100 CD-MOF-1 MIL-53(Fe) MIL-100(Fe) MIL-101(Cr) MOF-74
Our data 170 90 1547 246 220 570 1035 375
Ibuprofen uptake (mg/g) Experiments4 Bernini et al.5c Bei et al.5b 208 55 1969 2030 274 220 217 347 641 1376 1289 425
Babarao et al.5a
Figure S1. Conformation of ibuprofen molecules in (a)MOF-74 and (b)RAVWES.
S6
1110
Figure S2. Conformation of ibuprofen in MIL-101(Cr).
S7
1000
Bei et al. (rigid bio-MOF-11) This work (rigid bio-MOF-11) This work (flexible bio-MOF-11) Cell boundary of bio-MOF-11
100
( )
2 Å
D S M
10
1
0.1 10
100
time (ps) Figure S3. MSDs of ibuprofen in bio-MOF-11. Data for Bei et al.5b is taken from the literature. (Cell boundaries were estimated considering the smallest unit cell parameters.)
S8
Å
Pore size analysis ( )
30
Bio-MOF-100
25
Flexible PLD Flexible LCD Rigid PLD Rigid LCD
20
15 0
40
80
time (ps) Figure S4. Pore size analysis of bio-MOF-100 during MD simulations.
S9
t=0 ps
t=50 ps
t=600 ps
Figure S5. MD snapshots of urea diffusion in bio-MOF-100 in the presence of water. Water molecules are shown in white circles.
S10
12
(a) Ibuprofen Rigid MOF Flexible MOF Flexible MOF + water
15
gHydroxyl_Oibu-ZnMOF(r)
gCarboxyl_Oibu-ZnMOF(r)
20
10
5
(b) Ibuprofen Rigid MOF Flexible MOF Flexible MOF + water
10
8
6
4
2 0 10
15
0
20
0
5
10
r( ) 12
Å
5
Å
0
15
20
r( ) 25
(c)
(d)
11
Caffeine Rigid MOF Flexible MOF Flexible MOF + water
gOCaf-ZnMOF(r)
9 8 7
Urea
20
gOUrea-ZnMOF(r)
10
6 5 4 3
Rigid MOF Flexible MOF Flexible MOF + water
15
10
5
2 1 0
0 10
15
0
20
5
10
Å
5
Å
0
15
r( )
r( )
Figure S6. RDF analyses of (a,b)ibuprofen, (c)caffeine and (d)urea in bio-MOF-100.
S11
20
Figure S7. Conformation of ibuprofen in bio-MOF-100.
Figure S8. Conformation of caffeine in bio-MOF-100.
Figure S9. Conformation of urea in bio-MOF-100. S12
References: (1) Devic, T.; Horcajada, P.; Serre, C.; Salles, F.; Maurin, G.; Moulin, B.; Heurtaux, D.; Clet, G.; Vimont, A.; Grenèche, J.-M.; Ouay, B. L.; Moreau, F.; Magnier, E.; Filinchuk, Y.; Marrot, J.; Lavalley, J.-C.; Daturi, M.; Férey, G., Functionalization in Flexible Porous Solids: Effects on the Pore Opening and the Host-Guest Interactions. J. Am. Chem. Soc. 2010, 132, 1127-1136. (2) Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M., Algorithms and Tools for High-Throughput Geometry-Based Analysis of Crystalline Porous Materials. Microporous and Mesoporous Mater. 2012, 149, 134-141. (3) Materials Studio v8.0. Biovia Software Inc., S. D., CA 92121,USA. (4) (a) Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G., MetalOrganic Frameworks as Efficient Materials for Drug Delivery. Angew. Chem. 2006, 118, 61206124; (b) Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C., Porous Metal-Organic-Framework Nanoscale Carriers as a Potential Platform for Drug Delivery and Imaging. Nat. Mater. 2010, 9, 172-178. (5) (a) Babarao, R.; Jiang, J., Unraveling the Energetics and Dynamics of Ibuprofen in Mesoporous Metal-Organic Frameworks. J. Phys. Chem. C 2009, 113, 18287-18291; (b) Bei, L.; Yuanhui, L.; Zhi, L.; Guangjin, C., Molecular Simulation of Drug Adsorption and Diffusion in Bio-MOFs. Acta Chim. Sinica 2014, 72, 942-948; (c) Bernini, M. C.; Fairen-Jimenez, D.; Pasinetti, M.; Ramirez-Pastor, A. J.; Snurr, R. Q., Screening of Bio-Compatible Metal-Organic Frameworks as Potential Drug Carriers Using Monte Carlo Simulations. J. Mater. Chem. B 2014, 2, 766-774.
S13