Supporting Information for

Report 3 Downloads 343 Views
Supporting Information for Efficient storage of drug and cosmetic molecules in bio-compatible MOFs: A molecular simulation study Ilknur Erucar and Seda Keskin* Koc University, Chemical and Biological Engineering, Rumelifeneri Yolu, Sariyer 34450, Istanbul, Turkey *

Corresponding author. Email: [email protected]

Table S1. Structural properties of bio-compatible MOFs† 3D structures MOF name

Bio-MOF1

Bio-MOF11

Bio-MOF12

Organic

Pore

linker

volume

and metals

(cm3/g)

Adenine Zn

Adenine Co

Adenine Co

Surface

PLD

LCD

area

(Å)

(Å)

2

(m /g)

0.55

1069

4.75

5.62

0.44

860

4.59

5.76

0.46

1001

4.75

5.62

S1

Bio-MOF100

Adenine Zn

Bio-MOF-

Adenine

101

Zn

Bio-MOF-

Adenine

102

Zn

CD-MOF1

Cyclodextrin K

CD-MOF-

Cyclodextrin

2

Rb

CD-MOF-

Cyclodextrin

3

Cs

2.64

3673

14.72

20.23

2754

19.56

24.09

3.21

3465

26.28

31.40

0.59

1130

7.17

16.85

0.59

1085

7.14

16.84

0.54

948

6.68

16.15

2.15

S2

Adenine IZUMUM

Cu

Fe MIL-53

MIL-53open1

MIL-100

MIL-101

MOF-74

terephthalate

Fe terephthalate

Fe carboxylate

Cr terephthalate

DOT* Mg

0.42

776

4.64

5.58

1096

5.64

6.13

0.64

1593

7.33

7.83

0.99

1748

9.04

27.91

1.96

3158

14.05

36.15

0.70

1621

10.76

11.64

0.53

S3

NUDKON

RAVVUH

RAVWAO

RAVWES

RAVWIW

RAVWOC

Adenine Zn

DOT* Mg

DOT* Mg

DOT* Mg

DOT* Mg

DOT* Mg

0.43

178

2.34

6.44

1.23

2228

16.38

17.18

1.42

2621

17.51

17.93

1.81

2759

23.63

24.44

2.28

3018

30.14

30.70

2.11

2916

27.56

28.22

S4

RAVWUI

RAVXAP

RAVXET

RAVXIX

DOT* Zn

DOT* Mg

DOT* Mg

DOT* Mg

2.55

2893

36.43

36.79

2.96

3360

34.36

34.86

2.54

2809

38.07

38.23

3.74

3036

53.26

53.58

†Physical properties, such as pore volume, pore-limiting diameter (PLD), largest cavity diameter (LCD), surface area (gravimetric surface area) were calculated using zeo++ software.2 Surface area calculations were performed using a probe radius of 1.86Å. For pore volume calculations, probe radius was set to zero. Measurements were done for bio-MOF-1, -100, -101 and -102 considering dimethylammonium (DMA) cations inside the cell. *DOT: dioxidoterephthalate. Surface area and pore volume of bio-MOF-102 and surface area of NUDKON were estimated using Materials Studio 8.0 software.3

S5

Table S2. Data for comparison of our predicted ibuprofen uptake with the experiments4 and other simulation data5 available in the literature.

MOF name Bio-MOF-1 Bio-MOF-11 Bio-MOF-100 CD-MOF-1 MIL-53(Fe) MIL-100(Fe) MIL-101(Cr) MOF-74

Our data 170 90 1547 246 220 570 1035 375

Ibuprofen uptake (mg/g) Experiments4 Bernini et al.5c Bei et al.5b 208 55 1969 2030 274 220 217 347 641 1376 1289 425

Babarao et al.5a

Figure S1. Conformation of ibuprofen molecules in (a)MOF-74 and (b)RAVWES.

S6

1110

Figure S2. Conformation of ibuprofen in MIL-101(Cr).

S7

1000

Bei et al. (rigid bio-MOF-11) This work (rigid bio-MOF-11) This work (flexible bio-MOF-11) Cell boundary of bio-MOF-11

100

( )

2 Å

D S M

10

1

0.1 10

100

time (ps) Figure S3. MSDs of ibuprofen in bio-MOF-11. Data for Bei et al.5b is taken from the literature. (Cell boundaries were estimated considering the smallest unit cell parameters.)

S8

Å

Pore size analysis ( )

30

Bio-MOF-100

25

Flexible PLD Flexible LCD Rigid PLD Rigid LCD

20

15 0

40

80

time (ps) Figure S4. Pore size analysis of bio-MOF-100 during MD simulations.

S9

t=0 ps

t=50 ps

t=600 ps

Figure S5. MD snapshots of urea diffusion in bio-MOF-100 in the presence of water. Water molecules are shown in white circles.

S10

12

(a) Ibuprofen Rigid MOF Flexible MOF Flexible MOF + water

15

gHydroxyl_Oibu-ZnMOF(r)

gCarboxyl_Oibu-ZnMOF(r)

20

10

5

(b) Ibuprofen Rigid MOF Flexible MOF Flexible MOF + water

10

8

6

4

2 0 10

15

0

20

0

5

10

r( ) 12

Å

5

Å

0

15

20

r( ) 25

(c)

(d)

11

Caffeine Rigid MOF Flexible MOF Flexible MOF + water

gOCaf-ZnMOF(r)

9 8 7

Urea

20

gOUrea-ZnMOF(r)

10

6 5 4 3

Rigid MOF Flexible MOF Flexible MOF + water

15

10

5

2 1 0

0 10

15

0

20

5

10

Å

5

Å

0

15

r( )

r( )

Figure S6. RDF analyses of (a,b)ibuprofen, (c)caffeine and (d)urea in bio-MOF-100.

S11

20

Figure S7. Conformation of ibuprofen in bio-MOF-100.

Figure S8. Conformation of caffeine in bio-MOF-100.

Figure S9. Conformation of urea in bio-MOF-100. S12

References: (1) Devic, T.; Horcajada, P.; Serre, C.; Salles, F.; Maurin, G.; Moulin, B.; Heurtaux, D.; Clet, G.; Vimont, A.; Grenèche, J.-M.; Ouay, B. L.; Moreau, F.; Magnier, E.; Filinchuk, Y.; Marrot, J.; Lavalley, J.-C.; Daturi, M.; Férey, G., Functionalization in Flexible Porous Solids: Effects on the Pore Opening and the Host-Guest Interactions. J. Am. Chem. Soc. 2010, 132, 1127-1136. (2) Willems, T. F.; Rycroft, C. H.; Kazi, M.; Meza, J. C.; Haranczyk, M., Algorithms and Tools for High-Throughput Geometry-Based Analysis of Crystalline Porous Materials. Microporous and Mesoporous Mater. 2012, 149, 134-141. (3) Materials Studio v8.0. Biovia Software Inc., S. D., CA 92121,USA. (4) (a) Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G., MetalOrganic Frameworks as Efficient Materials for Drug Delivery. Angew. Chem. 2006, 118, 61206124; (b) Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C., Porous Metal-Organic-Framework Nanoscale Carriers as a Potential Platform for Drug Delivery and Imaging. Nat. Mater. 2010, 9, 172-178. (5) (a) Babarao, R.; Jiang, J., Unraveling the Energetics and Dynamics of Ibuprofen in Mesoporous Metal-Organic Frameworks. J. Phys. Chem. C 2009, 113, 18287-18291; (b) Bei, L.; Yuanhui, L.; Zhi, L.; Guangjin, C., Molecular Simulation of Drug Adsorption and Diffusion in Bio-MOFs. Acta Chim. Sinica 2014, 72, 942-948; (c) Bernini, M. C.; Fairen-Jimenez, D.; Pasinetti, M.; Ramirez-Pastor, A. J.; Snurr, R. Q., Screening of Bio-Compatible Metal-Organic Frameworks as Potential Drug Carriers Using Monte Carlo Simulations. J. Mater. Chem. B 2014, 2, 766-774.

S13