Supporting Information
High-Efficiency Light-Emitting Diodes of Organometal Halide Perovskite Amorphous Nanoparticles Jun Xing1, Fei Yan2, Yawen Zhao3, Shi Chen1, Huakang Yu1, Qing Zhang1, Rongguang Zeng3, Hilmi Volkan Demir1,2,4, Xiaowei Sun2, Alfred Huan1, & Qihua Xiong1,5,*
1
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore 637371 2
LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, TPI-The
Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 6397983 China Academy of Engineering Physics, Mianyang 621900, China 4
Department of Electrical and Electronics Engineering, Department of Physics, UNAM−Institute
of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey 5
NOVITAS, Nanoelectronics Centre of Excellence, School of Electrical and Electronic
Engineering, Nanyang Technological University, Singapore 639798 *To whom the correspondence should be addressed. Email:
[email protected] d(200) = 2.98 Å
2nm
Figure S1. HRTEM images of CH3NH3PbBr3 amorphous NPs damaged by electrons beam (200 kV) of TEM instrument. Scale bar, 50 nm. The images from left to right are taken with time. The lattice fringes were measured to be 0.298 nm, which is corresponding to the facet (200) of cubic phase CH3NH3PbBr3.
Figure S2. Digital images of perovskite colloid in toluene under ambient light and UV lamp. Vials from left to right are corresponding to the samples synthesized from S-1, S-2, S-3 and S-4.
d(200) = 2.94 Å
20 nm
2 nm
Absorption & PL intensity / a.u.
Figure S3. TEM and HRTEM images of crystalline CH3NH3PbBr3 nanoparticles.
400
500
600
700
800
Wavelength / nm Figure S4. UV-vis absorption and PL spectra of the as-prepared amorphous (blue lines) and crystalline (red lines) CH3NH3PbBr3 nanoparticles.
a
b
10 nm
2 1/nm
c
d
10 nm
2 1/nm
Figure S5. HRTEM images and corresponding SAED pattern of CH3NH3PbCl1.5Br1.5 (a, b) and CH3NH3PbBr1.5I1.5 (c, d) amorphous NPs.
Normalized PL intensity / a.u.
Br
0
1
τ1 = 5.58 ns
τ2 = 0.79 ns
2Cl1Br
τ1 = 3.88 ns
1Cl1Br
τ1 = 2.9 ns
1Cl2Br
τ1 = 2.47 ns
τ2 = 0.38 ns
τ2 = 0.51 ns
τ2 = 0.44 ns
2Br1I τ1 = 2.62 ns
τ2 = 0.47 ns
1Br1I τ1 = 4.60 ns
τ2 = 0.87 ns
1Br2I τ1 = 4.13 ns
τ2 = 0.83 ns
2
3
4
5
6
7
8
Time / ns Figure S6. Time-resolved PL decay curve of as-prepared perovskite samples. The sample names 2Cl1Br, 1Cl1Br, 1Cl2Br, Br, 2Br1I, 1Br1I, 1Br2I and I mean the atom ratio of halogen in the perovskite samples.
Work Function Intensity / a.u.
Intensity / a.u.
Valence Band
2.7 eV
3.8 eV 4
3
2
1
0
2
Binding Energy / eV
3
4
5
6
7
Binding Energy / eV
Figure S7. The valence band and work function curve of amorphous perovskite CH3NH3PbBr3. The valance band maximum was determined to be 2.7 eV with respect to Fermi level at 0 eV and the work function was determined to be 3.8 eV. So, the valance band maximum is -6.5 eV versus vacuum level. According to the UV-vis absorption spectra, the band gap of the amorphous perovskite CH3NH3PbBr3 was calculated to be 2.4 eV. Therefore, conduction band minimum is -4.1 eV versus vacuum level.
30 nm
10 0 -10 nm
-30 nm
Figure S8. AFM top view image of the perovskite CH3NH3PbBr3 NPs film used for LED fabrication. The length of image side is 5.0 µm. Ra = 4.35 nm.
Intensity (a.u.)
0 degree/normal direction 30 degree 45 degree 60 degree
450
475
500
525
550
575
600
Wavelength (nm) Figure S9. EL spectra with view angles from 0 to 60 degree.
10
EQE / %
8
Reported works on perovskite bulk film Reported works on colloidal perovskite NPs Our results on colloidal perovskite NPs
6 4 2 0 14-05
14-10
15-03
15-08
16-01
Date / year-month Figure S10. Progress of green-color PeLEDs1-11. EQEs of two previous PeLED based on colloidal perovskite was not shown in literatures, but according to their luminance and current density, their EQEs can be estimated to be less than 0.01%.
EQE(%)
1
0.1
0.1
1
10
100 2
Current Density (mA/cm )
Figure S11. EQE-Current density of device 5 (solid black square) and device 6 (solid red circle).
2
Current Density (mA/cm )
300 250 200 150 100 50 0 0
2
4
6
8
10
12
Voltage (V) Figure S12. Current density-Voltage of device 5 (solid black square) and device 6 (solid red circle).
2
Current Density (mA/cm )
120 100 80 60 40 20 0 0
2
4
6
8
10
Voltage (V)
2000
2
Current Density (mA/cm )
Figure S13. Current density-Voltage of device 4.
1500
1000
500
0 0
2
4
6
Voltage (V) Figure S14. Current density-Voltage of device 7.
8
10
2
EL Intensity (cd/m )
100 80 60 40 20 0 0
50
100
150
200
Time (s) Figure S15. Lifetime of the PeLED under consistent current.
Table S1. PLQEs of perovskite NPs with different halide components. The sample names 3Cl2Br, 1Cl1Br, 1Cl2Br, 1Cl4Br, Br, 4Br1I, 2Br1I, 1Br1I and 1Br2I mean the atom ratio of halogen in the perovskite samples. CH3NH3PbX3
3Cl2Br
1Cl1Br
1Cl2Br
1Cl4Br
Br
4Br1I
2Br1I
1Br1I
1Br2I
PLQE (%)
23
32
51
59
77
5.3
5.5
13
30
Table S2. The performance of the PeLED with perovskite emitting layer spin-coated under different speed. Rotate speed (rpm)
Lmax (cd/m2)
EQE (%)
Ƞ (lm/W)
1000
6288
1.65
2.81
1500
3515
3.8
7.84
2000
5928
2.2
3.34
2500
2236
3.3
6.3
Table S3. Key parameters and structure of all devices. Quantum Yield
Power Efficiency
Von @ 1cd/m2
V @1000 c/m2 (V)
Lmax (cd/m2)
Device 1
1.62
2.97
2.8
4.3
11780
Device 2
3.51
6.52
3.4
8.4
4360
Device 3
3.04
4.70
4.20
6.3
11830
Device 4
3.8
7.84
3.10
5.9
3515
Device 5
0.95
1.33
4.91
8.4
4684
Device 6
1.1
1.88
4
6.1
3983
Device 7
1.51
3.6
3.3
3.9
9392
Device 8
2.25
5.19
3.7
4.3
5689
Device 9
0.96
1.8
3.2
5.8
4899
Device 1-5: ITO\PEDOT:PSS\PeNPs\TPBi\TPBi:Cs2CO3\Al Device 6: ITO\PEDOT:PSS\poly-TPD\PeNPs\TPBi\TPBi:Cs2CO3\Al Device 7-8: ITO\PEDOT:PSS\poly-TPD\PeNPs\B3PYMPM\B3PYMPM:Cs2CO3\Al Device 9: ITO\PEDOT:PSS\PeNPs\B3PYMPM\B3PYMPM:Cs2CO3\Al
Table S4. Key parameters of typical green color PeLED. Materials MAPbBr3 bulk film
Max Luminance
Max Current efficiency
(cd/m2)
(cd/A)
~20000
42.9
Max EQE (%)
Ref
8.53
1
MAPbBr3 bulk film
~3000
/
1.2
2
MAPbBr3 bulk film
~25000
/
0.8
3
MAPbBr3 bulk film
364
0.3
0.1
4
MAPbBr3 bulk film
417
0.577
0.125
5
MAPb Br1.86Cl1.14 bulk film
1.25
/
/
6
MAPbBr3 bulk film
/
/
0.1
7
MAPbBr3 bulk film
544.65
0.22
0.051
8
MAPbBr3 colloidal NPs
0.45
/
/
9
MAPbBr3 colloidal NPs
1.3
/
/
10
MAPbBr3 colloidal NPs
2503
4.5
1.1
11
References 1.
Cho, H.; Jeong, S.–H.; Park, M.–H.; Kim, Y.–H.; Wolf, C.; Lee, C.–L.; Heo, J. H.; Sadhanala,
A.; Myoung, N.; Yoo, S.; et al. Overcoming The Electroluminescence Efficiency Limitations of Perovskite Light–Emitting Diodes. Science 2015, 350, 1222–1225. 2.
Li, G.; Tan, Z.–K.; Di, D.; Lai, M. L.; Jiang, L.; Lim, J. H.–W.; Friend, R. H.; Greenham, N.
C. Efficient Light–Emitting Diodes Based on Nanocrystalline Perovskite in a Dielectric Polymer Matrix. Nano Lett. 2015, 15, 2640–2644. 3.
Wang, J.; Wang, N.; Jin, Y.; Si, J.; Tan, Z.–K.; Du, H.; Cheng, L.; Dai, X.; Bai, S.; He, H.; et
al. Interfacial Control Toward Efficient and Low–Voltage Perovskite Light–Emitting Diodes. Adv. Mater. 2015, 27, 2311–2316. 4.
Tan, Z.–K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.;
Sadhanala, A.; Pazos, L. M.; Credgington, D.; et al. Bright Light–Emitting Diodes Based on Organometal Halide Perovskite. Nat. Nanotechnol. 2014, 9, 687–692. 5.
Kim, Y.-H.; Cho, H.; Heo, J. H.; Kim, T.-S.; Myoung, N.; Lee, C.-L.; Im, S. H.; Lee, T.-W.
Multicolored Organic/Inorganic Hybrid Perovskite Light-Emitting Diodes. Adv. Mater. 2014, 27, 1248–1254. 6.
Kumawat, N. K.; Dey, A.; Kumar, A.; Gopinathan, S. P.; Narasimhan, K. L.; Kabra, D. Band
Gap Tuning of CH3NH3Pb(Br1–xClx)3 Hybrid Perovskite for Blue Electroluminescence. ACS Appl. Mater. Interfaces 2015, 7, 13119–13124. 7.
Sadhanala, A.; Ahmad, S.; Zhao, B.; Giesbrecht, N.; Pearce, P. M.; Deschler, F.; Hoye, R. L.
Z.; Gödel, K. C.; Bein, T.; Docampo, P.; et al. Blue-Green Color Tunable Solution Processable Organolead Chloride–Bromide Mixed Halide Perovskites for Optoelectronic Applications. Nano Lett. 2015, 15, 6095–6101.
8.
Yu, J. C.; Kim, D. B.; Baek, G.; Lee, B. R.; Jung, E. D.; Lee, S.; Chu, J. H.; Lee, D.-K.; Choi,
K. J.; Cho, S.; et al. High-Performance Planar Perovskite Optoelectronic Devices: A Morphological and Interfacial Control by Polar Solvent Treatment. Adv. Mater. 2015, 27, 3492– 3500. 9.
Schmidt, L. C.; Pertegás, A.; González-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Mínguez
Espallargas, G.; Bolink, H. J.; Galian, R. E.; Pérez-Prieto, J. Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles. J. Am. Chem. Soc. 2014, 136, 850–853. 10. Aygüler, M. F.; Weber, M. D.; Puscher, B. M. D.; Medina, D. D.; Docampo, P.; Costa, R. D. Light-Emitting Electrochemical Cells Based on Hybrid Lead Halide Perovskite Nanoparticles. J. Phys. Chem. C 2015, 119, 12047–12054. 11. Huang, H.; Zhao, F.; Liu, L.; Zhang, F.; Wu, X.-G.; Shi, L.; Zou, B.; Pei, Q.; Zhong, H. Emulsion Synthesis of Size-Tunable CH3NH3PbBr3 Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2015, 7, 28128–28133.