Supporting Information High-Efficiency Light-Emitting Diodes of ...

Report 3 Downloads 72 Views
Supporting Information

High-Efficiency Light-Emitting Diodes of Organometal Halide Perovskite Amorphous Nanoparticles Jun Xing1, Fei Yan2, Yawen Zhao3, Shi Chen1, Huakang Yu1, Qing Zhang1, Rongguang Zeng3, Hilmi Volkan Demir1,2,4, Xiaowei Sun2, Alfred Huan1, & Qihua Xiong1,5,*

1

Division of Physics and Applied Physics, School of Physical and Mathematical Sciences,

Nanyang Technological University, Singapore 637371 2

LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, TPI-The

Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 6397983 China Academy of Engineering Physics, Mianyang 621900, China 4

Department of Electrical and Electronics Engineering, Department of Physics, UNAM−Institute

of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey 5

NOVITAS, Nanoelectronics Centre of Excellence, School of Electrical and Electronic

Engineering, Nanyang Technological University, Singapore 639798 *To whom the correspondence should be addressed. Email: [email protected]

d(200) = 2.98 Å

2nm

Figure S1. HRTEM images of CH3NH3PbBr3 amorphous NPs damaged by electrons beam (200 kV) of TEM instrument. Scale bar, 50 nm. The images from left to right are taken with time. The lattice fringes were measured to be 0.298 nm, which is corresponding to the facet (200) of cubic phase CH3NH3PbBr3.

Figure S2. Digital images of perovskite colloid in toluene under ambient light and UV lamp. Vials from left to right are corresponding to the samples synthesized from S-1, S-2, S-3 and S-4.

d(200) = 2.94 Å

20 nm

2 nm

Absorption & PL intensity / a.u.

Figure S3. TEM and HRTEM images of crystalline CH3NH3PbBr3 nanoparticles.

400

500

600

700

800

Wavelength / nm Figure S4. UV-vis absorption and PL spectra of the as-prepared amorphous (blue lines) and crystalline (red lines) CH3NH3PbBr3 nanoparticles.

a

b

10 nm

2 1/nm

c

d

10 nm

2 1/nm

Figure S5. HRTEM images and corresponding SAED pattern of CH3NH3PbCl1.5Br1.5 (a, b) and CH3NH3PbBr1.5I1.5 (c, d) amorphous NPs.

Normalized PL intensity / a.u.

Br

0

1

τ1 = 5.58 ns

τ2 = 0.79 ns

2Cl1Br

τ1 = 3.88 ns

1Cl1Br

τ1 = 2.9 ns

1Cl2Br

τ1 = 2.47 ns

τ2 = 0.38 ns

τ2 = 0.51 ns

τ2 = 0.44 ns

2Br1I τ1 = 2.62 ns

τ2 = 0.47 ns

1Br1I τ1 = 4.60 ns

τ2 = 0.87 ns

1Br2I τ1 = 4.13 ns

τ2 = 0.83 ns

2

3

4

5

6

7

8

Time / ns Figure S6. Time-resolved PL decay curve of as-prepared perovskite samples. The sample names 2Cl1Br, 1Cl1Br, 1Cl2Br, Br, 2Br1I, 1Br1I, 1Br2I and I mean the atom ratio of halogen in the perovskite samples.

Work Function Intensity / a.u.

Intensity / a.u.

Valence Band

2.7 eV

3.8 eV 4

3

2

1

0

2

Binding Energy / eV

3

4

5

6

7

Binding Energy / eV

Figure S7. The valence band and work function curve of amorphous perovskite CH3NH3PbBr3. The valance band maximum was determined to be 2.7 eV with respect to Fermi level at 0 eV and the work function was determined to be 3.8 eV. So, the valance band maximum is -6.5 eV versus vacuum level. According to the UV-vis absorption spectra, the band gap of the amorphous perovskite CH3NH3PbBr3 was calculated to be 2.4 eV. Therefore, conduction band minimum is -4.1 eV versus vacuum level.

30 nm

10 0 -10 nm

-30 nm

Figure S8. AFM top view image of the perovskite CH3NH3PbBr3 NPs film used for LED fabrication. The length of image side is 5.0 µm. Ra = 4.35 nm.

Intensity (a.u.)

0 degree/normal direction 30 degree 45 degree 60 degree

450

475

500

525

550

575

600

Wavelength (nm) Figure S9. EL spectra with view angles from 0 to 60 degree.

10

EQE / %

8

Reported works on perovskite bulk film Reported works on colloidal perovskite NPs Our results on colloidal perovskite NPs

6 4 2 0 14-05

14-10

15-03

15-08

16-01

Date / year-month Figure S10. Progress of green-color PeLEDs1-11. EQEs of two previous PeLED based on colloidal perovskite was not shown in literatures, but according to their luminance and current density, their EQEs can be estimated to be less than 0.01%.

EQE(%)

1

0.1

0.1

1

10

100 2

Current Density (mA/cm )

Figure S11. EQE-Current density of device 5 (solid black square) and device 6 (solid red circle).

2

Current Density (mA/cm )

300 250 200 150 100 50 0 0

2

4

6

8

10

12

Voltage (V) Figure S12. Current density-Voltage of device 5 (solid black square) and device 6 (solid red circle).

2

Current Density (mA/cm )

120 100 80 60 40 20 0 0

2

4

6

8

10

Voltage (V)

2000

2

Current Density (mA/cm )

Figure S13. Current density-Voltage of device 4.

1500

1000

500

0 0

2

4

6

Voltage (V) Figure S14. Current density-Voltage of device 7.

8

10

2

EL Intensity (cd/m )

100 80 60 40 20 0 0

50

100

150

200

Time (s) Figure S15. Lifetime of the PeLED under consistent current.

Table S1. PLQEs of perovskite NPs with different halide components. The sample names 3Cl2Br, 1Cl1Br, 1Cl2Br, 1Cl4Br, Br, 4Br1I, 2Br1I, 1Br1I and 1Br2I mean the atom ratio of halogen in the perovskite samples. CH3NH3PbX3

3Cl2Br

1Cl1Br

1Cl2Br

1Cl4Br

Br

4Br1I

2Br1I

1Br1I

1Br2I

PLQE (%)

23

32

51

59

77

5.3

5.5

13

30

Table S2. The performance of the PeLED with perovskite emitting layer spin-coated under different speed. Rotate speed (rpm)

Lmax (cd/m2)

EQE (%)

Ƞ (lm/W)

1000

6288

1.65

2.81

1500

3515

3.8

7.84

2000

5928

2.2

3.34

2500

2236

3.3

6.3

Table S3. Key parameters and structure of all devices. Quantum Yield

Power Efficiency

Von @ 1cd/m2

V @1000 c/m2 (V)

Lmax (cd/m2)

Device 1

1.62

2.97

2.8

4.3

11780

Device 2

3.51

6.52

3.4

8.4

4360

Device 3

3.04

4.70

4.20

6.3

11830

Device 4

3.8

7.84

3.10

5.9

3515

Device 5

0.95

1.33

4.91

8.4

4684

Device 6

1.1

1.88

4

6.1

3983

Device 7

1.51

3.6

3.3

3.9

9392

Device 8

2.25

5.19

3.7

4.3

5689

Device 9

0.96

1.8

3.2

5.8

4899

Device 1-5: ITO\PEDOT:PSS\PeNPs\TPBi\TPBi:Cs2CO3\Al Device 6: ITO\PEDOT:PSS\poly-TPD\PeNPs\TPBi\TPBi:Cs2CO3\Al Device 7-8: ITO\PEDOT:PSS\poly-TPD\PeNPs\B3PYMPM\B3PYMPM:Cs2CO3\Al Device 9: ITO\PEDOT:PSS\PeNPs\B3PYMPM\B3PYMPM:Cs2CO3\Al

Table S4. Key parameters of typical green color PeLED. Materials MAPbBr3 bulk film

Max Luminance

Max Current efficiency

(cd/m2)

(cd/A)

~20000

42.9

Max EQE (%)

Ref

8.53

1

MAPbBr3 bulk film

~3000

/

1.2

2

MAPbBr3 bulk film

~25000

/

0.8

3

MAPbBr3 bulk film

364

0.3

0.1

4

MAPbBr3 bulk film

417

0.577

0.125

5

MAPb Br1.86Cl1.14 bulk film

1.25

/

/

6

MAPbBr3 bulk film

/

/

0.1

7

MAPbBr3 bulk film

544.65

0.22

0.051

8

MAPbBr3 colloidal NPs

0.45

/

/

9

MAPbBr3 colloidal NPs

1.3

/

/

10

MAPbBr3 colloidal NPs

2503

4.5

1.1

11

References 1.

Cho, H.; Jeong, S.–H.; Park, M.–H.; Kim, Y.–H.; Wolf, C.; Lee, C.–L.; Heo, J. H.; Sadhanala,

A.; Myoung, N.; Yoo, S.; et al. Overcoming The Electroluminescence Efficiency Limitations of Perovskite Light–Emitting Diodes. Science 2015, 350, 1222–1225. 2.

Li, G.; Tan, Z.–K.; Di, D.; Lai, M. L.; Jiang, L.; Lim, J. H.–W.; Friend, R. H.; Greenham, N.

C. Efficient Light–Emitting Diodes Based on Nanocrystalline Perovskite in a Dielectric Polymer Matrix. Nano Lett. 2015, 15, 2640–2644. 3.

Wang, J.; Wang, N.; Jin, Y.; Si, J.; Tan, Z.–K.; Du, H.; Cheng, L.; Dai, X.; Bai, S.; He, H.; et

al. Interfacial Control Toward Efficient and Low–Voltage Perovskite Light–Emitting Diodes. Adv. Mater. 2015, 27, 2311–2316. 4.

Tan, Z.–K.; Moghaddam, R. S.; Lai, M. L.; Docampo, P.; Higler, R.; Deschler, F.; Price, M.;

Sadhanala, A.; Pazos, L. M.; Credgington, D.; et al. Bright Light–Emitting Diodes Based on Organometal Halide Perovskite. Nat. Nanotechnol. 2014, 9, 687–692. 5.

Kim, Y.-H.; Cho, H.; Heo, J. H.; Kim, T.-S.; Myoung, N.; Lee, C.-L.; Im, S. H.; Lee, T.-W.

Multicolored Organic/Inorganic Hybrid Perovskite Light-Emitting Diodes. Adv. Mater. 2014, 27, 1248–1254. 6.

Kumawat, N. K.; Dey, A.; Kumar, A.; Gopinathan, S. P.; Narasimhan, K. L.; Kabra, D. Band

Gap Tuning of CH3NH3Pb(Br1–xClx)3 Hybrid Perovskite for Blue Electroluminescence. ACS Appl. Mater. Interfaces 2015, 7, 13119–13124. 7.

Sadhanala, A.; Ahmad, S.; Zhao, B.; Giesbrecht, N.; Pearce, P. M.; Deschler, F.; Hoye, R. L.

Z.; Gödel, K. C.; Bein, T.; Docampo, P.; et al. Blue-Green Color Tunable Solution Processable Organolead Chloride–Bromide Mixed Halide Perovskites for Optoelectronic Applications. Nano Lett. 2015, 15, 6095–6101.

8.

Yu, J. C.; Kim, D. B.; Baek, G.; Lee, B. R.; Jung, E. D.; Lee, S.; Chu, J. H.; Lee, D.-K.; Choi,

K. J.; Cho, S.; et al. High-Performance Planar Perovskite Optoelectronic Devices: A Morphological and Interfacial Control by Polar Solvent Treatment. Adv. Mater. 2015, 27, 3492– 3500. 9.

Schmidt, L. C.; Pertegás, A.; González-Carrero, S.; Malinkiewicz, O.; Agouram, S.; Mínguez

Espallargas, G.; Bolink, H. J.; Galian, R. E.; Pérez-Prieto, J. Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles. J. Am. Chem. Soc. 2014, 136, 850–853. 10. Aygüler, M. F.; Weber, M. D.; Puscher, B. M. D.; Medina, D. D.; Docampo, P.; Costa, R. D. Light-Emitting Electrochemical Cells Based on Hybrid Lead Halide Perovskite Nanoparticles. J. Phys. Chem. C 2015, 119, 12047–12054. 11. Huang, H.; Zhao, F.; Liu, L.; Zhang, F.; Wu, X.-G.; Shi, L.; Zou, B.; Pei, Q.; Zhong, H. Emulsion Synthesis of Size-Tunable CH3NH3PbBr3 Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2015, 7, 28128–28133.