Supporting Information NaSn2As2: An Exfoliatable Layered van der ...

Report 7 Downloads 42 Views
Supporting  Information     NaSn2As2: An Exfoliatable Layered van der Waals Zintl Phase Maxx Q. Arguilla,‡,1 Jyoti Katoch,‡,2 Kevin Krymowski,3 Nicholas D. Cultrara,1 Jinsong Xu,2 Xiaoxiang Xi,4 Amanda Hanks, 3 Shishi Jiang,1 Richard D. Ross, 1 Roland J. Koch,5 Søren Ulstrup,5 Aaron Bostwick,5 Chris Jozwiak,5 David W. McComb, 3 Eli Rotenberg,5 Jie Shan,4 Wolfgang Windl,3 Roland Kawakami2 and Joshua E. Goldberger*,1 1

Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio

43210-1340, United States 2

Department of Physics, The Ohio State University, Columbus, Ohio 43210-1340, United

States 3

Department of Materials Science and Engineering, The Ohio State University,

Columbus, Ohio 43210-1340, United States 4

Department of Physics, The Pennsylvania State University, University Park,

Pennsylvania 16802-6300, United States

5

Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley,

California 94720, United States                    

Figure S1. Powder XRD Rietveld refinement results for NaSn2As2 using TOPAS. Table S1. TOPAS Rietveld Refinement parameters for NaSn2As2 Empirical Formula NaSn2As2 Fw 410.253 Space Group R-3m a (Å) 3.99998(10) c (Å) 27.5619(13) Cell Volume (Å3) 381.91(2) T (K) 295 Pattern Range (θ) 5-70 λ (Å) 1.5406 Rwp (%) 4.44 Rp (%) 3.19 Table S2. Atomic coordinates for NaSn2As2 from Rietveld refinement. Atom x y z Occupancy Beq Sn 0 0 0.2095(7) 1 0.72(5) As 0 0 0.4069(1) 1 0.34(7) Na 0 0 0 1 0.41(4) Table S3. Selected bond lengths from the refined NaSn2As2 structure. d (Å) Sn-Sn 3.30 Na-As 3.07 Sn-As 2.69  

   

  Figure  S2.  Verification  of  the  Sn:As  stoichiometry  in  NaSn2As2  measured  via  X-­‐Ray   Fluorescence.    Red  data  points  correspond  to  different  mixtures  of  elemental  Sn  and   As  to  prepare  a  standard  calibration  curve.            

  Figure  S3.  XPS  spectra  of  the  NaSn2As2  crystals  after  exposure  to  4  days  in  air   (green)  and  after  etching  the  top  1  nm  (red)  using  a  Ar+    ion  etch,  highlighting  the  a)   Na  1s,    b)  Sn  4d,  c)  Sn  3d5/2,  and  d)  As  3d  peaks.          

   

  Figure  S4.  AFM  images  and  height  profiles  of  mechanically-­‐exfoliated  NaSn2As2   onto  285  nm  SiO2/Si.            

  Figure  S5.  Step  height  analysis  of  AFM  micrographs  taken  on  exfoliated  NaSn2As2   flakes  with  multiple  step  edges.  Step  thicknesses  were  obtained  from  averaged   heights  along  the  horizontal  length  of  each  step.        

  Figure  S6.  AFM  thickness  histogram  of  different  step  heights  obtained  from   mechanically-­‐exfoliated  NaSn2As2  showing  that  cleaved  steps  always  have   thicknesses  that  were  multiples  of  ~0.9  ±  0.2  nm.                

 

 

  Figure  S7.  UV-­‐Vis  Spectrum  of  NaSn2As2  dispersed  in  various  solvents.        

  Figure  S8.  AFM  images  and  height  profiles  of  CHP-­‐exfoliated  NaSn2As2  flakes  that   were  prepared  via  dropcasting  onto  285  nm  SiO2/Si.            

  Figure  S9.  AFM  thickness  histogram  of  36  different  flakes  that  were  prepared  via   dropcasting  CHP-­‐exfoliated  NaSn2As2  onto  285  nm  SiO2/Si.                    

  Figure  S10.  Representative  EDX  spectrum  of  solvent-­‐exfoliated  NaSn2As2.        

    Figure  S11.  HRTEM  image  of  CHP-­‐exfoliated  NaSn2As2  highlighting  long-­‐range   order  based  on  the  (015)  lattice  fringes.  Inset  is  a  fast  Fourier  transform  of  the   image  showing  a  [2-­‐51]  zone  axis.              

Figure  S12.  XPS  spectra  of  the  liquid-­‐exfoliated  NaSn2As2  flakes  after  exposure  to  1   day  (green)  and  3  days  in  air  (purple),  highlighting  the  a)  Na  1s,  b)  Sn  3d5/2,  and  c)   As  3d  peaks.                

 

 

  Figure  S13.  Adhesion  energy  of  NaSn2As2  as  a  function  of  layer  separation.    The   data  for  the  DFT-­‐D2  (plain  GGA)  calculation  are  red  (blue).    The  interlayer   separation  is  relative  to  the  equilibrium  separation  of  bulk  NaAs2Sn2.                

  Figure  S14.  ARPES  spectrum  of  NaSn2As2,  collected  at  127  eV  at  41  K.          

 

  Figure  S15.  HSE  band  structure  of  a  single  layer  NaSn2As2  which  shows  that  the   metallic  character  is  preserved  in  isolated  layers.