SUPPORTING INFORMATION
Elucidating the Rejection Mechanisms of PPCPs by Nanofiltration and Reverse Osmosis Membranes
Yi-Li Lin1*, Chung-Hsiang Lee1
1
Department of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, Kaohsiung 824, Taiwan, R.O.C.
*Corresponding author: Yi-Li Lin E-mail:
[email protected] Phone: +886-7-6011000#2328 Fax: +886-7-6011061
Table S1 Physicochemical properties of membranes used in this study. Property
XLE
NF90
NF270
Manufacture
FilmTec, Dow
FilmTec, Dow
FilmTec, Dow
NF
NF
Fully aromatic
Fully aromatic
Semiaromatic
polyamide TFC
polyamide TFC
piperazine-based
(FT-30 type)
(FT-30 type)
polyamide TFC
MWCO (Da)
100 a
200 a, c
300 e, g
Average pore radius (nm)
-
0.34 d
0.42 d
8.8
10.6
17.8
NaCl rejection (%)
99
85-95
40
MgSO4 rejection (%)
-
> 97
> 97
Contact angle (◦)
66.3 a
63.2 a
64.1 ± 10.5 c, e
129.5 ± 23.4 g
142.8 ± 9.6 g
9.0 ± 4.2 e , g
3.5 h
4.0 h
4.1 e
pH = 3
13 i
13 h
7f
pH = 5
-17 i
-7 h
-15 f
pH = 7
-33 i
-24.9 h
-19 f, -22 h
pH = 9
-38 i
-28 h
-22 f
pH = 10
-38 i
-29 h
-28 f
Ultra low Membrane type pressure RO
Membrane material
Pure water permeability (L/m2 h bar)
Root mean square roughness (nm) Isoelectric point, pH Zeta potential (mV)
a 1 b 2, 3 c 4 d 5 e 6 f 7 g 8 h 9 i 10
,
,
,
,
;
;
;
,
.
Table S2
Physicochemical properties of PPCPs used in this study. Diffusion coefficient (10-10 m2/s) a 5.81
Stokes radius (nm) 0.422
pKab
log Kowc
Classificationd
C15H12N2O
Molecula r weight (g/mol) 236.3
13.9
2.45
HPO-N
Analgesic
C13H18O2
206.3
5.95
0.412
4.3
3.14
HPO-I
68-35-9
Antibiotic
C10H10N4O2S
250.3
6.11
0.401
6.4
0.21
HPI-I
SMX
723-46-6
Antibiotic
C10H11N3O3S
253.3
6.08
0.403
5.7
0.86
HPI-I
Sulfamethazine
SMZ
57-68-1
Antibiotic
C12H14N4O2S
278.3
5.58
0.439
7.6
1.62
HPI-N
Triclosan
TRI
3380-34-5
Antibiotic
C12H7Cl3O2
289.5
5.91
0.415
8.0
4.86
HPO-N
Name
Acronym
CAS #
Type
Molecular formula
Carbamazepine
CBZ
298-46-4
Antiepileptic
Ibuprofen
IBU
15687-27-1
Sulfadiazine
DIA
Sulfamethoxazole
a
Calculated from the method proposed by Wilke and Chang 11. ADME/Tox Web Software. c Calculated using ChemOffice 2010. d HPI: hydrophilic (log Kow ≦ 2), HPO: hydrophobic (log Kow > 2), I: ionic (pKa ≦ 7), N: noni-onic (pKa > 7). b
Structure
References (1) Xu, P.; Drewes, J. E.; Kim, T.-U.; Bellona, C.; Amy, G., Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications. J. Membr. Sci. 2006, 279, 165-175. (2) Kimura, K.; Iwase, T.; Kita, S.; Watanabe, Y., Influence of residual organic macromolecules produced in biological wastewater treatment processes on removal of pharmaceuticals by NF/RO membranes. Water Res. 2009, 43, 3751-3758. (3) Kimura, K.; Toshima, S.; Amy, G.; Watanabe, Y., Rejection of neutral endocrine disrupting compounds (EDCs) and pharmaceutical active compounds (PhACs) by RO membranes. J.Membr. Sci. 2004, 245, 71-78. (4) Radjenovic, J.; Petrovic, M.; Ventura, F.; Barcelo, D., Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res. 2008, 42, 3601-3610. (5) Nghiem, L. D.; Coleman, P. J., NF/RO filtration of the hydrophobic ionogenic compound triclosan: Transport mechanisms and the influence of membrane fouling. Sep. Purif. Technol. 2008, 62, 709-716. (6) Lin, Y. L.; Chiang, P. C.; Chang, E. E., Removal of small trihalomethane precursors from aqueous solution by nanofiltration. J. Hazard. Mater. 2007, 146, 20-29. (7) Lin, Y. L., Effects of Physicochemical Properties of Nanofiltration Membranes on the Rejection of Small Organic DBP Precursors. J. Environ. Eng. 2013, 139, 127-136. (8) Tang, C. Y.; Kwon, Y.-N.; Leckie, J. O., Fouling of reverse osmosis and nanofiltration membranes by humic acid—Effects of solution composition and hydrodynamic conditions. J. Membr. Sci. 2007, 290, 86-94. (9) Nghiem, L. D.; Schafer, A. I.; Elimelech, M., Pharmaceutical retention mechanisms by nanofiltration membranes. Environ. Sci. Technol. 2005, 39, 7698-7705. (10) McCloskey, B. D., Novel surface modifications and materials for fouling resistant water purification membranes. The University of Texas at Austin, Chemical Engineering 2009. (11) Wilke, C. R.; Chang, P., Correlation of diffusion coefficients in dilute solutions. AIChE J. 1955, 1, 264-270.