Technological Change Future Perspectives Nebojš Nebojša Nakić Nakićenović enović International Institute for Applied Systems Analysis xx Technische Universitä Universität Wien xx
[email protected] Santa Fe Institute, Summer School on Global Sustainability – 23 July 2009
New Worlds: Grand Transformations 10 10 Industrial
10 9 1700 A.D. Agricultural
10 8
10 7 Tool Making 5000 B.C. Source: R. Kates (1997) after E. Deevey (1960)
10 6 10 6
105
104
10 3
102
101
100
Years Before Present
Nakicenovic
Source: Kates & Deevey
#2
2004
Dimensions of Transformations Technology Governance Economic Social Demographic Knowledge Values
Source: Paul Raskin, 2002
1
Urbanization 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 1800
1850
1900
1950
2000
Source: Grü Grübler, 2007
Nakicenovic
2050
2100
#4
2150
2009
Education 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 1800
1850
1900
1950
2000
Source: Lutz, 2007
Nakicenovic
2050
2100
#5
2150
2009
Democratization 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 1800
Nakicenovic
1850
1900
1950
2000
Source: Modelski, Modelski, 2002
2050
#6
2100
2150
2009
2
World Primary Energy 500 Renewable
Primary Energy (EJ)
400
Microchip
Commercial aviation
300
200
Nuclear energy
Television
Steam engine
100
Electric motor
Gasoline engine
Nuclear
Gas
Oil
Vacuum tube
Coal Biomass
0 1850
Nakicenovic
s
1900
1950
2000
#7
2009
Warmest 12 years:
1998,2005,2003,2002,2004,2006, Global Mean Temperatures are Rising 2001,1997,1995,1999,1990,2000
Period
Rate
50 0.1280.026 100 0.0740.018
Years /decade
INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE (IPCC)
Global Change Challenges ● Sustainable access to energy and food (a prerequisite for reaching MDGs) ● Energy and ecosystems services ● Security and reliability of systems ● Deep CO2 and GHG reductions ● Investment in R&D and deployment ● Climate, Economy, Investment Crises
3
RENEWABLE RESOURCE BASE (EXAJOULES A YEAR)
Resource Hydropower Biomass energy Solar energy Wind energy Geothermal energy Ocean energy Total
Current usea 9 50 0.1 0.12 0.6 n.e. 56
Technical Theoretical potential potential 50 147 >276 2,900 >1,575 3,900,000 640 6,000 5,000 140,000,000 n.e. 7,400 >7,600 >144,000,000
n.e. Not estimated a. The electricity part of current use is converted to primary energy with an average factor of 0.385.
Source: WEA, 2000
Nakicenovic
#10
2009
Carbon Reservoirs Atmosphere 800 GtC (2004)
Biomass ~500 GtC
Oil N. Gas ~260 GtC ~270 GtgC
Soils ~1,500 GtC
Coal 5,000 to 8,000 GtC Unconventional Fossil Fuels 15,000 to 40,000 GtC Nakicenovic
Source: Edmonds, 2005 #11 2009
14
Methane Hydrate
Nakicenovic
#12
2009
4
#13
Nakicenovic
2009
Evolution of Global Primary Energy
#14
Nakicenovic
2009
Global Primary Energy – A2r 2000 1800 1600 1400 EJ
1200 1000
Renewables Nuclear Gas Oil Coal
800 600 400 200 0 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
Nakicenovic
#15
2009
5
Global Primary Energy – B1 2000 Renewables
1800
Nuclear
1600
Gas
1400
Oil Coal
EJ
1200 1000 800 600 400 200
0 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
Nakicenovic
#16
2009
Surface Temperature Change
AOGCM projections for illustrative SRES scenarios
INTERGOVERNMENTAL PANEL ON CLIMATE CHNGE (IPCC)
Long-Term Stabilization Profiles A2
B1
INTERGOVERNMENTAL PANEL ON CLIMATE CHNGE (IPCC)
6
Long-Term Stabilization Profiles A2
B1
~$100/tCO2 INTERGOVERNMENTAL PANEL ON CLIMATE CHNGE (IPCC)
Long-Term Stabilization Profiles