The Geometry of Quantum Field Theory

Report 6 Downloads 81 Views
   The  Geometry  of  Quantum  Field  Theory  

Robbert  Dijkgraaf   Ins$tute  for  Advanced  Study     2014  MPS  Annual  Mee:ng   Simons  Founda:on  

Some  Ideology  

TRUTH  AND  BEAUTY   Seal  of  the  Ins-tute  for  Advanced  Study  

“My  work  always  tried  to  unite   the  true  with  the  beau-ful,  but   when  I  had  to  choose  one  or   the  other,  I  usually  chose  the   beau-ful.”        Hermann  Weyl  

“It  is  more  important  for   our  equa-ons  to  be   beau-ful  than  to  have   them  fit  experiment.”        Paul  Dirac  

“Every  law  of  physics,  pushed  to  the  extreme,     will  be  found  to  be  sta-s-cal  and  approximate,     not  mathema-cal  perfect  and  precise.”          John  Wheeler  

“Any  theory  that  can  account  for  all  of  the  facts  is  wrong,   because  some  of  the  facts  are  always  wrong.”                                        Francis  Crick    

Esthe:cs  in  Physics  

Garbage

Beauty

Reduc*on  

Garbage

Beauty

Standard   Model  

macro  

micro  

Emergence  

Beauty

Garbage

hydrodynamics   thermodynamics  

Standard Model sta-s-cal  mechanics  

macro  

micro  

Renormaliza*on  Group  

Infrared fixed points

Ultraviolet fixed points

Λ=0

Λ=∞

Large  distances   Low  energy  

Standard Model Short  distances   High  energy  

macro  

micro  

Quan*za*on  

Geometry

Algebra

K

Z(K) ∈ C quantum     invariant  

geometric     object  





Emergent  Geometry  

Geometry

effec-ve   geometry  

Algebra

quantum     system  

Synthesis  

Quantum Geometry

String  Theory  

Classical  Mechanics  

B A

calculus, geometry, dynamical systems, chaos,…

Quantum  Mechanics  

Sum  over  histories  

A

− Action / h e ∑

functional analysis, operator algebra, differential topology,…

B

Quantum  Field  Theory  

A

crea-on/annihila-on  of  par-cles  

C quantum topology: knots, 3- & 4-manifolds twistors, Grassmannians & amplitudology

B

String  Theory  

conformal field theory, algebraic curves, moduli spaces, mirror symmetry, quantum cohomology

Quantum  Gravity  

A?

non-commutative geometry, emergent geometry, automorphic forms,…

What  Is  A  Quantum  Field  Theory?  

Classical  Field  Theory   Space-­‐*me  manifold  M,  field  space  F    

φ :M →F

Ac*on,  cri*cal  points    

S[φ ], dS = 0

Classical  field  equa*ons    

∇ 2φ + ... = 0

Moduli  space  of  classical  solu*ons  

{dS = 0} / Sym = ⨿ Modn n

M

Quantum  Field  Theory   Euclidean  path  integral    

Z(M ) =

−S(φ )/! D φ . e ∫

Semi-­‐classical  localisa*on  to  cri*cal  points     Typical  form     Classical  limit    

Z(M ) ~ ∑ e−Sn /! . ∫ n

Modn

voln

Modn

Z(M ) ~ ∑ dn q n , q ~ e−1/! n

! → ∞, q → 0

φ :M →F

Duali:es   Quantum  equivalences    

φ : M → Rn / Λ

*

Z(M, F) = Z(M, F )

e.g.  D=2  T-­‐duali*es,  M  =  Riemann  surface,  F  =  n-­‐torus   where  

F = T n = R n / Λ, F * = T * = R n / Λ *

dφ * = *dφ

 

Par**on  func*on  =  theta  func*on    

Z = θΛ =

Extended  symmetry    



eπ i( p+w)τ ( p+w)−π i( p−w)τ ( p−w)

p∈Λ,w∈Λ*

SL(n, Z) ⊂ SO(n, n, Z ) = Aut(Λ ⊕ Λ * )

Space   Space  oof  f  QCuantum   lassical  FField   ield  TTheories heories     classical   limit   !↓0            

classical  field   theory  F  

     

Q   F   T  

special     automorphisms  

Duali:es   dual  classical  field   theory  F*  

dual   classical   limit     !* ↓0

self-­‐dual     QFTs  

Duali:es  of  Effec:ve  QFT   Renormaliza*on  group    

Z(M, Fε )

Depends  on  cut-­‐off  distance  ε  or  energy  scale  Λ=1/ε   RG  flow  on  space  of  regularized  quantum  field  theories      

F = F∞ ε =∞

−ε∂ ε

F * = F0 ε=0

  Some*mes  Z  independent  of  ε    

Z(M, F0 ) = Z(M, F∞ )

Defining  Quantum  Field  Theory:  Algebra  

x1 O1 (x1 )....On (xn )

xn

Operator  products  of  local  operators             ScaPering  amplitudes  

D=2  Conformal  Field  Theory   Oi (x)

Operator  product  expansion  

lim

Oi (x) O j (y)

∑ k

x→y

O j (y)

Ok (y)

Vertex  algebra   Associa*ve  algebra  

∞-­‐dim  vertex  algebras   classifica-on  reps  Virasoro  

=

Defining  Quantum  Field  Theory:  Geometry   cut  &  paste         topological  indices         defect  operators    

Category  Theory   M  codim  0:  number,  par**on  func*on  

Φ:M →C

M

S  codim  1:  vector  space,  Hilbert  space  of  states  

Φ:S → H

M

Φ(M ) ∈ Φ(∂M )

Gluing  laws  

M1

M2

Φ(M1 )! Φ(M 2 ) = Φ(M )

M

Category  Theory   codim  2:  category  of    boundary  condi*ons   α H :α → β

β

Composi*on  law  of  morphisms   α

H1 : α → β

β

H2 : β → γ

γ

H 2 ! H1 : α → γ

D=1  Supersymmetric  QM     Differen*al  geometry  &  topology   *me  

→X point  

Hilbert space = Ω* ( X ) H = −Δ = −(dd * + d *d ) Ground  states  =  harmonic  forms  

Harm* ( X ) ≅ H * ( X ) Par**on  func*on  =  WiPen  index  

Tr ((−1)deg e−tH ) = Euler ( X )

D=2  Conformal  Field  Theory  

X →X *me  

S1

LX Loop  Space  

Quan*ze  loop  space       Fock  space  created  by  string  oscillators     Infinite-­‐dimensional  analysis     Loop  space  thickening       X ⊂ LX

String  Product   *

Physical  fields  =  cohomology  classes   a,b ∈ H ( X )

a a ∧b

b

H* ⊗ H* → H*

Topological  String  Theory  

F0 (t) = ∑GWd ,0e −dt

d≥0 (pseudo) holomorphic d = deg, tcurves = Area / ℓ 2string

string  

Calabi-­‐Yau  X  

Classical  Intersec:on  Product   ℓs = 0 dual cycles

a

c b

= X =



X

a∧b∧c

Quantum  Cohomology   ℓs > 0

=



e

− dt/ℓ2s

rat curves degree d

X for P n

x n+1 = 0 ⇒ x n+1 = e −t

smooth under flops

t ↔ −t

local  P1  

ℓs = 0 t 0  moduli  space  

ℓs > 0

t =0 singularity  at  zero  size  

Open  Strings  &  Branes   fixed time picture

brane

X

Y

open strings (brane)

closed strings (bulk)

D-­‐branes:  Rela:ve  CFT   Space-time picture

string worldsheet

brane

Y

Σ X

4D Space-time

D-­‐Branes  

multiplicity N

Internal space

U(N)  Yang-­‐Mills  Theory  

i

j

N×N matrix of strings Aij

U(N)  Yang-­‐Mills  Theory  

j k k i matrix multiplication Σk Aik Akj

Closed/Open  Duali:es   open  strings  

closed  strings  

⇔ strings inf-dim Lie algebras loop spaces g ≈ 0 s Virasoro algebra genus expansion



D-branes vector bundles K-theory s spaces moduli non-commutative

g ≈∞

A:yah-­‐Singer  Index  Theorem   analysis  ⇔  geometry  

ˆ X) Index DE ⊗E = ∫ ch(E1 ⊗ E2* ) A( 1

2

zero-­‐modes     Dirac  operator   time

Tr( −1) F = Index DE1 ⊗ E2

topology  of   vector  bundle   time

〈 E1 , E2 〉 = ∫ ch( E1 ⊗ E2* ) Aˆ ( X )

String  Theory   Two  fundamental  parameters   String  length  (Planck’s  constant  on  world  sheet)  

ℓs

String  coupling  (Planck’s  constant  in  space  -me)  

gs

ℓ Planck = g s ℓ s

String  Par::on  Func:on    

Z string = exp ∑ g s2 g−2 Fg t;ℓ s g≥0

gs ≈ 0

( )

genus  g  

Phase  Diagram   strings  

branes  

CFT   strings  

ℓs

par-cles  

gs

    fields  

Quantum  Geometry   (emergent)  

Stringy  Geometry   (deformed)  

Classical  Geometry    

ℓ Planck = g s ℓ s

ℓs

smooth

Simplest  Calabi-­‐Yau  3-­‐fold  

!3

(

)

z1 , z2 , z3 ∈ ! 3

Constant  Maps,  d  =  0  

g N g ,0 =

∫λ

Mg

3 g−1

=

B2 g B2 g−2 2g(2g − 2)(2g − 2)!

3d  Par::ons   Z = exp ∑ N g g s2 g−g g≥0

(

= ∏ 1− q n>0

=

n

)

−n



3d partitions of N

q = e− gs

qN

(

Z top = ∏ 1− q n>0

n

)

−n

=1+ q + 3q 2 + 6q3 + ...

Mel:ng  Crystals  

Z top = ∑ q

# atoms

(

=∏ 1− q n>0

n

)

−n

Limit  Shape  =  Mirror  Manifold  

ℓ Planck

ℓ string

smooth

D=4  Gauge  Theories   Instantons:  self-­‐dual  connec*on   F = ∗F  4-­‐manifold   M

moduli  space   ModN ,n (M)

4

ch2 = n









Ac*on   S=

4π g2

θ

∫ TrF ∧∗F + 8π ∫ TrF ∧ F = −n ⋅ 2πiτ 2

Gauge  coupling   τ=

4π θ +i 2 ∈ H 2π g

Duali:es  of  D=4  Gauge  Theories   Electric-­‐magne*c  duali*es    

F(A* ) = *F(A)

Langlands  dual  gauge  group    

G ⇔ LG

Dual  coupling    

τ ⇔ −1 / τ

Extended  symmetry   SL(2, Z)  

τ→

aτ + b cτ + d

N=4  SUSY  Gauge  Theory   Vafa-­‐WiPen:  par**on  func*on  is  a  modular  form  

Z(M;q) = ∑ d(n)q n ,

d(n) = Euler ( Mod N,n )

n≥0

•  SL(2,Z)  S-­‐duality  in  N=4  gauge  theories  ↔  modular   invariance  of  a  quantum  CFT  on  2-­‐torus   aτ +   b τ→ cτ + d T2 •  Related  to  2d  CFT  characters   €

Z(q) = TrV q L0 = χ (q) €

N  =  4  Gauge  Theories  on  ALE  spaces   •  Resolved  singularity   MΓ → C 2 /Γ   finite  subgroup     Γ ⊂ SU(2)   € •  Boundary   condi*on:   flat  connec*on       €   ρ ∈ Hom(Γ,U(N)), ρ = ⊕N i ρ i     •  MacKay  correspondence:  finite  groups    Γ        ↔          gˆ          affine   KM  €algebras    

N  =  4  Gauge  Theories  on  ALE  spaces  



•  ρ          rep  of  dim  N  of  Γ          ↔                V    ρ            integrable  rep  at  level  N  of   gˆ   N0   N1 € € € € €

!

2 € of  SU(k)N  WZW  model   •     A    k−1          :    C          /Z        k          characters  



Z gauge (q) ρ = TrVρ q L0 = χ ρ (q) €

•  Level-­‐rank  duality     SU(N) k ↔ SU(k) N €

N=2  SUSY  Gauge  Theory   R4  

ε1

Equivariant  ac*on  of    SO(4)  x  U(N)  on     ModN ,n (R 4 )

(ε1,ε2 ;a) ∈ T 2 × T N

ε2



U(1) × U(1) ⊂ SO(4)

€ Nekrasov  par**on  func*on:  equivariant  fundamental   class   €



€ Z gauge (q;ε1,ε2 ,a) = ∑ q n n≥ 0

∫ 1(ε ,ε ,a) 1

2

M N ,n

Tradi*onal  (supersymmetric)  case   ε1 = −ε2 = ε = gs €

Seiberg-­‐Wiben  solu:on   Z gauge = e F ,

F = ∑ε 2g−2 Fg

ε

g

Quantum  (symplec:c)  invariants  of  the  spectral  curve     € one-­‐form   (C,ω ), ω = meromorphic     €       ∂F0 F0 : µi = ω (moduli),   = ∫ω   ∂µi B i Ai € 1   F1 = logdet Δ   2   Fg : genus  g  graphs   € €     €



R4

Emergent   Geometry  

D=6  Tensor  (2-­‐form)  Gauge  Theory   D=2  CFT  

×

C2





M4

D=4  Gauge  Theory  

Wigner’s  Random  Matrix  Model   lim Z N ,

N →∞

ZN =

∫ dΦ ⋅ e−TrΦ

2

/ gs

N ×N

Eigenvalue  distribu*on  in  ’t  Hooi  limit     N → ∞, gs → 0, Ngs = µ = fixed €



Eigenvalue  Dynamics   Z matrix =

∫d

N

2

λ ⋅ ∏ ( λI − λJ ) ⋅ e

−∑ λ2I / g s I

Effec*ve    ac*on  (repulsive  Coulomb  force)   €

Seff = ∑ λ2I − 2gs ∑ log( λI − λJ ) I



I <J

W (x) = x 2

General  Matrix  Model   Z matrix =

TrW (Φ) / g s dΦ ⋅ e ∫

’t  Hooi  limit     N I → ∞, gs → 0, N I gs = µI = fixed   € Filling  frac*ons  



N3

N1 N2

W (Φ )

Spectral  Curve   Hyperellip*c  curve  

C : y 2 = W '(x) 2 + f (x)



Quantum  invariants  of    C, ω = ydx

µi =



Ai

ydx

∂F0 = ∫ ydx ∂µi B i

Wigner’s  Semi-­‐Circle   Ra*onal  spectral  curve  

C : y2 = x 2 + µ

A 1 2 ∂ F0 = µ log µ, F0 = µ€log µ 2 ∂µ

Quantum  Curves  

N →∞

O(1 N )

N finite

F0

∑N g≥0

2−2 g

Fg

Categorifica:on   “Miraculous”  integrality        

Z(M ) = ∑ dn q n n

dn ∈ Z

M

Suggests  higher  dimensional  QFT      

dn = dimVn (M )

The  vector  spaces  Vn  can  carry  representa*ons  of   algebraic  structures  

M ×R

Knot  Polynomials   Knot  K  in  S3  in  Chern-­‐Simons  theory      

Z(K, G) =

−kCS( A) DA e . TrR Hol(K ) ∫

Knot  polynomials  (Jones,…)        

Z(K, G) = ∑ dn q n , dn ∈ Z n

q = e 2 π i/(k+h) = e !

Khovanov  cohomology  

Local  Defini:ons   CFT   D-­‐branes   TFT  

Riemann   surfaces  

Gauge   Theories   Matrix     Models  

General   Rela*vity  

String   Theory  

Non-­‐comm   geometry  

Global   Defini:on?  

Mathema:cs  of  QFT   •  Construc*ve  and  algebraic  QFT,  asympto*cally  free  theories  (Clay   prize).   •  Surprisingly  rich  structure  in  Feynman  diagrams  (Hopf  algebra  of   Connes-­‐Kreimer,  mul*ple  zeta-­‐func*ons,  number  theory).   •  Twistor  reformula*ons,  MHV  calculus,  amplituhedron,...   •  Duali*es:  rela*ng  different  gauge  groups  &  dynamical  variables,   not  always  a  semi-­‐classical  expansion.     •  Is  the  path-­‐integral  fundamental?  

What  Kind  of  Mathema:cal  Beauty?  

universal   calculus,   Hilbert  spaces  

excep:onal   E8,  Monster  Group,   Calabi-­‐Yau  manifolds  

Plato’s  Cave   Mathema-cal  Dream  

Physical  Reality  

Quantum  Cave   Physical  Dream  

Mathema-cal  Reality