The skew spectrum of graphs - NYU Computer Science

Report 1 Downloads 21 Views
The skew spectrum of graphs Risi Kondor

Gatsby Unit, UCL with

Karsten Borgwardt

University of Cambridge

2 3 1

4 5

7

6

2 3 1

4 5

7

6



0 0  0  A= 1 0  0 0

0 0 1 1 0 0 0

0 1 0 1 0 0 0

1 1 1 0 0 1 0

0 0 0 0 0 1 0

0 0 0 1 1 0 1

 0 0  0  0  0  1 0

2 3 1

4 5

7



0 0  0  A= 1 0  0 0

0 0 1 1 0 0 0

0 1 0 1 0 0 0

1 1 1 0 0 1 0

0 0 0 0 0 1 0

0 0 0 1 1 0 1

 0 0  0  0  0  1 0

6

q(A) is a graph invariant if it is invariant to relabeling.

poly(n) time computable

complete set of invariants Graph isomorphism problem

efficiently computable set of invariant features Graph kernels, etc.

f (σ)f=: [A] Sn σ(n),σ(n−1) →R

f( 7 f( 7 f( 7 f( ? f( ?

? ? ? ? ? ) = [A]1,2 ? 6 ? ? ? ? ) = [A]1,3 ? ? 6 ? ? ? ) = [A]1,4 6

.. .

7 7

.. .

.. .

? ? ? ? ) = [A]2,3 ? 6 ? ? ? ) = [A]2,4 6

.. .

Now if we permute the vertices by i !→ π(i) ....

[A ]π(i),π(j) = [A]i,j !

Now if we permute the vertices by i !→ π(i) ....

[A ]π(i),π(j) = [A]i,j !

ff ( ? !

7

? π(j)

6

? ? ?)= π(i)

f( ?

7

i

?

? ? ?)

6

j

... in other words f (πσ) = f (σ) . !

... or f = f , where !

π

f (σ) = f (π π

is the translate of f by π.

−1

σ)

2. Non-commutative harmonic analysis and invariants

G is a group if for any x, y, z ∈ G

1. xy ∈ G , 2. x(yz) = (xy)z , 3. there is an e ∈ G such that ex = xe = x, 4. there is an x

−1

∈ G such that xx

−1

=x

−1

x = e.

Permutations σ : {1, 2, . . . , n} →{ 1, 2, . . . , n} form a group called the symmetric group, denoted Sn .

n−1 "

−ikx ! f (k) = e f (x) ρ(x) ρ(y) x=0 = ρ(xy)

f!(ρ) =

"

x∈G

ρ(x) f (x)

ρ(x) ρ(y) = ρ(xy)

ρ: G → C

d×d

is called a representation of G

Example

S3

!

1 0

ρ((12)) =

!

ρ(e) =

ρ((123)) =

!

0 1

"

1 0 0 −1

2 3

"

√ " −1/2 − 3/2 √ 3/2 −1/2

1

Equivalence: ρ1 (x) = T −1 ρ2 (x) T

Reducibility: T ρ: G → C

! = ρ(xy) ρ(x) ρ(y)

ρ(x) T =

−1

d×d

ρ1 (x) 0 0 ρ2 (x)

"

is called a representation of G

A complete set of inequivalent irreducible unitary representations we denote R .

The Fourier transform on a group is



Diaconis: !Group" representations in probability f (ρ) = f (x) ρ(x) ρ∈R and statistics (1988) x∈G • Clausen, Maslen, Rockmore, Healy, ... : FFTs • Kondor, Howard and Jebara: Multi-object tracking with representations of the symmetric group (AISTATS, 2007) • Huang, Guestrin and Guibas: Efficient inference for distributions on permutations (NIPS, 2007)

t ! f (ρ) = ρ(t) f!(ρ)

The power spectrum of f is the set of invariant matrices † ! ! ! a(ρ) = f (ρ) · f (ρ)

! at (ρ) = (ρ(t)f!(ρ))† · (ρ(t)f!(ρ)) = f!(ρ)† · f!(ρ) = ! a(ρ)

Kakarala’s non-commutative bispectrum is

b(ρ1 , ρ2 ) = C

! †

#† $ f"(ρ1 ) ⊗ f"(ρ2 ) C f"(ρ) ρ

where ρ1 (z) ⊗ ρ2 (z) = C

!"

# ρ(z) C †

ρ

is the Clebsch-Gordan decomposition. [Kakarala, 1992]

The skew spectrum is the unitarily equivalent, but easier to compute set of matrices q!z (ρ) = r!z (ρ) · f!(ρ) †

where

rz (x) = f (xz)f (x)

[Kondor, 2007]

3. Back to graphs...

What we have so far: 1.

f (σ) = [A]σ(n),σ(n−1)

2.

Under permuting the vertices f = f

3.

Our favorite invariant is the skew spectrum

!

q!ν (ρ) = r!ν (ρ) · f!(ρ) †

where

f!(ρ) =

"

π

rν (σ) = f (σν) f (σ)

ρ(σ) f (σ)

σ∈Sn

Far too expensive in this form!

f( 7 f( 7 f( 7 f( ? f( ?

? ? ? ? ? ) = [A]1,2 ? 6 ? ? ? ? ) = [A]1,3 ? ? 6 ? ? ? ) = [A]1,4 6

.. .

7 7

.. .

.. .

? ? ? ? ) = [A]2,3 ? 6 ? ? ? ) = [A]2,4 6

.. .

1. The ν index only has to extend over one representative from each Sn−2 σ Sn−2 coset. 2. The f! and r!ν Fourier transforms are very sparse.

f!(

r!ν (ρ)† · f!(ρ)

)=

d=1

f!(

)=

d=n−1

2·2

f!(

)=

d = n(n − 3)/2

1·1

f!(

)=

d = (n − 1)(n − 2)/2

1·1

f!(

)=

1·1

7 d = n(n − 1)(n − 5)/6

The answer is

49.

(and it’s computable in O(n ) time) 3

Sn

Bratelli diagram

http://www.cs.columbia.edu/~risi/SnOB

4. Experiments



For n up to about 300, the skew spectrum can be computed in fractions of a second.



For small graphs (n~5) it’s complete!



For n~100 good for learning tasks.

Number of instances/classes Max. number of nodes Reduced skew spectrum Random walk kernel Shortest path kernel

MUTAG 600/6 28 88.61 (0.21) 71.89 (0.66) 81.28 (0.45)

ENZYME 188/2 126 25.83 (0.34) 14.97 (0.28) 27.53 (0.29)

NCI1 4110/2 111 62.72 (0.05) 51.30 (0.23) 61.66 (0.10)

NCI109 4127/2 111 62.62 (0.03) 53.11 (0.11) 62.35 (0.13)

Conclusions



Reduced the problem of representing graphs to an abstract algebraic problem.



Being restricted to a homogeneous space makes it easy to compute the skew spectrum but also collapses its size.



Surprisingly, just 49 scalar invariants seem to be able enough to do the job (compressed sensing).



Natural question: what about labeled graphs?