induction
p.v.
can. parab.
mean values
geometric side
reordering
The trace formula and prehomogeneous vector spaces Werner Hoffmann Bielefeld University, SFB 701
Simons Symposium on Families of Automorphic Forms and the Trace Fromula January 29, 2014
examples
induction
p.v.
can. parab.
mean values
geometric side
reordering
Induction of conjugacy classes Consider connected linear algebraic groups over a field F and geometric conjugacy classes. Theorem (Lusztig-Spaltenstein for unipotent classes, H.) Let P be a parabolic subgroup of a reductive group G with Levi decomposition P = MN, and C a conjugacy class in M. Then there is a unique dense P-conjugacy class C ′ in CN and a ˜ in G such that C ˜ ∩ P = C ′. unique conjugacy class C S P P ′ ˜ = IndG Notation C P C , C = InflM C , Pinfl = C InflM C
examples
induction
p.v.
can. parab.
mean values
geometric side
reordering
examples
Induction of conjugacy classes Consider connected linear algebraic groups over a field F and geometric conjugacy classes. Theorem (Lusztig-Spaltenstein for unipotent classes, H.) Let P be a parabolic subgroup of a reductive group G with Levi decomposition P = MN, and C a conjugacy class in M. Then there is a unique dense P-conjugacy class C ′ in CN and a ˜ in G such that C ˜ ∩ P = C ′. unique conjugacy class C S P P ′ ˜ = IndG Notation C P C , C = InflM C , Pinfl = C InflM C Theorem (Lusztig-Spaltenstein, H.)
G If M is a Levi component of both P and Q, then IndG P C = IndQ C . Given γ ∈ G , there are only finitely many P such that γ ∈ Pinfl .
induction
p.v.
can. parab.
mean values
geometric side
reordering
examples
Prehomogeneous varieties Definition • A prehomogeneous G -variety is an irreducible variety V with an algebraic G -action such that there exists a dense G -orbit O. • It is called special if every relatively G -invariant rational function (defined over any extension of F ) is constant. • (V , G ) is called a prehomogeneous vector space if V is a vector space and the G -action is linear. • It is called regular if V ∗ is prehomogeneous and dp/p : O → V ∗ is a dominant morphism for some relative invariant p. p(gx) = χ(g )p(x).
induction
p.v.
can. parab.
mean values
geometric side
reordering
examples
Prehomogeneous varieties Definition • A prehomogeneous G -variety is an irreducible variety V with an algebraic G -action such that there exists a dense G -orbit O. • It is called special if every relatively G -invariant rational function (defined over any extension of F ) is constant. • (V , G ) is called a prehomogeneous vector space if V is a vector space and the G -action is linear. • It is called regular if V ∗ is prehomogeneous and dp/p : O → V ∗ is a dominant morphism for some relative invariant p. p(gx) = χ(g )p(x). Zeta integral (F number field, A ring of adeles): Z X φ(g ξ) dg |χ1 (g )|s1 . . . |χr (g )|sr Z (φ, s1 , . . . , sr ) = G (A)/G (F )
ξ∈O(F )
induction
p.v.
can. parab.
mean values
geometric side
reordering
Canonical parabolic subgroups G reductive, char F = 0. Jacobson-Morozov: ∀ X ∈ g nilpotent, ∃ H, Y ∈ g such that [H, X ] = 2X ,
[H, Y ] = −2Y ,
[X , Y ] = H.
examples
induction
p.v.
can. parab.
mean values
geometric side
reordering
Canonical parabolic subgroups G reductive, char F = 0. Jacobson-Morozov: ∀ X ∈ g nilpotent, ∃ H, Y ∈ g such that [H, Y ] = −2Y ,
[H, X ] = 2X ,
[X , Y ] = H.
Canonical parabolic of X and of exp X ∈ G (F ): M q= gn , Q = NormG q, n≥0
where gn = {Z ∈ g | [H, Z ] = nZ }.
examples
induction
p.v.
can. parab.
mean values
geometric side
reordering
Canonical parabolic subgroups G reductive, char F = 0. Jacobson-Morozov: ∀ X ∈ g nilpotent, ∃ H, Y ∈ g such that [H, Y ] = −2Y ,
[H, X ] = 2X ,
[X , Y ] = H.
Canonical parabolic of X and of exp X ∈ G (F ): M q= gn , Q = NormG q, n≥0
where gn = {Z ∈ g | [H, Z ] = nZ }. Theorem (Vinberg, H.) L L Let u = n≥2 gn , u′ = [u, u] = n>2 gn . Then u/u′ is a regular prehomogeneous vector space under L = CentG H.
examples
induction
p.v.
can. parab.
mean values
geometric side
reordering
Mean value formula Theorem (Siegel/Weil/Ono) If O is a special G -homogeneous variety over a number field F with trivial π1 (O(C)), π2 (O(C)) and X (G ), and if [G (A)ξ ∩ O(F ) : G (F )] is constant on O(F ), then Z Z X φ(g ξ) dg = φ(x) dx. G (A)/G (F ) ξ∈O(F )
G (A)O(F )
examples
induction
p.v.
can. parab.
mean values
geometric side
reordering
Mean value formula Theorem (Siegel/Weil/Ono) If O is a special G -homogeneous variety over a number field F with trivial π1 (O(C)), π2 (O(C)) and X (G ), and if [G (A)ξ ∩ O(F ) : G (F )] is constant on O(F ), then Z Z X φ(g ξ) dg = φ(x) dx. G (A)/G (F ) ξ∈O(F )
G (A)O(F )
Conjecture There is a normal unipotent subgroup N C of P such that, for γ ∈ C ′ = InflP C , all elements of γN C ∩ C ′ have the same canonical parabolic and γN/N C is special under PγN .
examples
induction
p.v.
can. parab.
mean values
geometric side
reordering
The geometric side of the trace formula Always write G for G (F ) and G for G (A). Exception: K a maximal compact subgroup of G such that G (F∞ )K is open and G = PK for every parabolic subgroup P. G1 the maximal closed normal subgroup with torsion-free abelian quotient.
examples
induction
p.v.
can. parab.
mean values
geometric side
reordering
The geometric side of the trace formula Always write G for G (F ) and G for G (A). Exception: K a maximal compact subgroup of G such that G (F∞ )K is open and G = PK for every parabolic subgroup P. G1 the maximal closed normal subgroup with torsion-free abelian quotient. Representation RP of G1 in L2 (NP\G1 ): Z KP (x, y )φ(y ) dy RP (f )φ (x) = G \G1
for f ∈ Cc∞ (G1 ), φ ∈ L2 (NP\G1 ), where X Z f (x −1 γny ) dn. KP (x, y ) = γ∈P/N
N
examples
induction
p.v.
can. parab.
mean values
geometric side
Truncation parameter TP ∈ aP = Lie(P/P1 ) Modular character ∆P : P → R+
reordering
examples
induction
p.v.
can. parab.
mean values
geometric side
reordering
Truncation parameter TP ∈ aP = Lie(P/P1 ) Modular character ∆P : P → R+ For P maximal: Let −ˆ τPT be the characteristic function of {p ∈ P | ∆P (p) > ∆P (exp TP )}K For general P, τˆPT (x) =
Y
P ′ ⊃P P ′ max.
τˆPT′ (x)
examples
induction
p.v.
can. parab.
mean values
geometric side
reordering
Truncation parameter TP ∈ aP = Lie(P/P1 ) Modular character ∆P : P → R+ For P maximal: Let −ˆ τPT be the characteristic function of {p ∈ P | ∆P (p) > ∆P (exp TP )}K For general P, τˆPT (x) =
Y
τˆPT′ (x)
P ′ ⊃P P ′ max.
Compatible family T = (TP )P : T ˆPT (x). τˆγPγ −1 (γx) = τ
examples
induction
p.v.
can. parab.
mean values
Arthur’s trace distribution: Z J T (f ) =
G \G1
X P
geometric side
KP (x, x)ˆ τPT (x) dx
reordering
examples
induction
p.v.
can. parab.
mean values
Arthur’s trace distribution: Z J T (f ) =
G \G1
X
geometric side
reordering
KP (x, x)ˆ τPT (x) dx
P
For geometric conjugacy class C in G , define JCT (f ) using X Z f (x −1 γny ) dn. KP,C (x, y ) = γ∈P/N IndG γ=C
N
Conjecture XZ C
hence
G \G1
X KP,C (x, x)ˆ τPT (x) dx < ∞,
J T (f ) =
P
P
C
JCT (f ).
examples
induction
p.v.
can. parab.
mean values
geometric side
reordering
examples
Reordering the unipotent contribution C a unipotent geometric conjugacy class. Z Z X X Z T JC (f ) = f (x −1 γnn′ x) dn′ dn τPT (x) dx. G \G1 P
γ∈P/N IndG γ=C
N/Nγ
Nγ
induction
p.v.
can. parab.
mean values
geometric side
reordering
examples
Reordering the unipotent contribution C a unipotent geometric conjugacy class. Z Z X X Z T JC (f ) = f (x −1 γnn′ x) dn′ dn τPT (x) dx. G \G1 P
γ∈P/N IndG γ=C
N/Nγ
Nγ
R P For γ ∈ D with InflP D = D ′ replace γN/ND by (D ′ ∩γN)N D /N D using mean-value formula. Ignoring convergence: Z Z X X X T f (x −1 γn′ x) dn′ τPT (x) dx, JC (f ) = G \G1 P D ′ ⊂C ∩P γ∈D ′ N D /N D
where D = D ′ N/N.
ND
induction
p.v.
can. parab.
mean values
geometric side
reordering
examples
Collect pairs (P, D ′ ) with given N ′ = N D , collect cosets γN D with given canonical parabolic Q (abbreviated γ ∈ Qcan ): Z XX X XZ T JC (f ) = f (x −1 γn′ x) dn′ τPT (x) dx. G \G1 Q N ′ ⊂Q γ∈(C ∩Q )N ′ /N ′ can
N′ P γ∈Pinfl N γ =N ′
induction
p.v.
can. parab.
mean values
geometric side
reordering
examples
Collect pairs (P, D ′ ) with given N ′ = N D , collect cosets γN D with given canonical parabolic Q (abbreviated γ ∈ Qcan ): Z XX X XZ T JC (f ) = f (x −1 γn′ x) dn′ τPT (x) dx. G \G1 Q N ′ ⊂Q γ∈(C ∩Q )N ′ /N ′ can
N′ P γ∈Pinfl N γ =N ′
Fix a canonical parabolic Q for C : Z Z X X T JC (f ) = Q\G1
N ′ ⊂Q γ∈(C ∩Qcan )N ′ /N ′
N′
f (x −1 γn′ x) dn′ χT γN ′ (x) dx,
where χT γN ′ (x) =
X
P γ∈Pinfl γ N =N ′
τPT (x).
induction
p.v.
can. parab.
mean values
geometric side
reordering
examples
Let JCT,N ′ (f , λ) with λ ∈ a∗Q,C be the contribution from fixed N ′ T (x)−λ , where aT (qk) = exp(−T )qQ1 for with damping factor aQ Q Q q ∈ Q, k ∈ K. For example, the truncated zeta integral Z X T T aQ JC ,{1} (f , λ) = (l)−λ−2ρU/U ′ fU ′ (l −1 ξl) χT ξ (l) dl, L\L∩G1
ξ∈C ∩U/U ′
where U = exp u = C ∩ Qcan , U ′ = exp u′ = [U, U] and Z Z ′ f (k −1 xu ′ k) du ′ dk (x ∈ U/U ′ ). fU (x) = K
U′
induction
p.v.
can. parab.
mean values
geometric side
reordering
examples
Let JCT,N ′ (f , λ) with λ ∈ a∗Q,C be the contribution from fixed N ′ T (x)−λ , where aT (qk) = exp(−T )qQ1 for with damping factor aQ Q Q q ∈ Q, k ∈ K. For example, the truncated zeta integral Z X T T aQ JC ,{1} (f , λ) = (l)−λ−2ρU/U ′ fU ′ (l −1 ξl) χT ξ (l) dl, L\L∩G1
ξ∈C ∩U/U ′
where U = exp u = C ∩ Qcan , U ′ = exp u′ = [U, U] and Z Z ′ f (k −1 xu ′ k) du ′ dk (x ∈ U/U ′ ). fU (x) = K
U′
Theorem (Wakatsuki-H.) For classical groups of absolute rank ≤ 2, the above transformation of JCT (f ) is valid, JCT,N ′ (f , λ) converges for Re λ ∈ (a∗Q )+ and can be continued meromorphically.
induction
p.v.
can. parab.
mean values
geometric side
reordering
examples
Examples G = Sp(V , ω), dim V = 4, γ = exp X subregular unipotent: [2, 2] Canonical flag: V0 = Ker X = Im X .
V
Isomorphism X : V /V0 → V0 . Symmetric bilinear forms b+ on V /V0 , b− on V0 :
V0
b+ (u, v ) = ω(u, Xv ) = b− (Xu, Xv ). 0
induction
p.v.
can. parab.
mean values
geometric side
reordering
examples
Examples G = Sp(V , ω), dim V = 4, γ = exp X subregular unipotent: [2, 2] V
Canonical flag: V0 = Ker X = Im X . Isomorphism X : V /V0 → V0 .
U+ V0
Symmetric bilinear forms b+ on V /V0 , b− on V0 : b+ (u, v ) = ω(u, Xv ) = b− (Xu, Xv ).
W+
U−
W− 0
Isotropic lines U+ /V0 , W+ /V0 for split b+ , U− , W− for split b− . ⊥ = U , XW = W ⊥ = W . XU+ = U+ − + − +
induction
p.v.
can. parab.
mean values
geometric side
reordering
examples
Examples G = Sp(V , ω), dim V = 4, γ = exp X subregular unipotent: [2, 2] V
Canonical flag: V0 = Ker X = Im X . Isomorphism X : V /V0 → V0 .
U+ V0
Symmetric bilinear forms b+ on V /V0 , b− on V0 : b+ (u, v ) = ω(u, Xv ) = b− (Xu, Xv ).
W+
U−
W− 0
Isotropic lines U+ /V0 , W+ /V0 for split b+ , U− , W− for split b− . ⊥ = U , XW = W ⊥ = W . XU+ = U+ − + − + ❅ Parabolics P with γ ∈ Pinfl : 7∅h ❅ −1 ′ (arrows N → N ) 0❅ 0 (U− , U+ ) (V0 ) (W− , W+ ) 1❅ ❅ P. V.: Quad(V0 ), AG /AQ ∼ = SO(V0 , b− ). γ
induction
p.v.
can. parab.
mean values
geometric side
reordering
examples
G = GL(V ), dim V = 4, γ = exp X subregular unipotent: [3, 1] V
Canonical flag: V1 = Ker X ∩ Im X = Im X 2 , V2 = Ker X + Im X = Ker X 2 .
ww Ker XG G
V2 E E Im X V1 0
zz
induction
p.v.
can. parab.
mean values
geometric side
reordering
examples
G = GL(V ), dim V = 4, γ = exp X subregular unipotent: [3, 1] V
Canonical flag: V1 = Ker X ∩ Im X = Im X 2 , V2 = Ker X + Im X = Ker X 2 . Parabolics P with γ ∈ Pinfl (arrows N → N ′ ):
(Im X )
jj4 ∅ jT?TT jjjj ???TTTTTTT j j j TT jjj
?? ?
(V1 )
?
?? ?
(V2 )
_?? ?
(Ker X )
(V1 , Im X ) (V1 , V2 ) (Ker X , V2 ) P.V.: Hom(V /V2 , V2 /V1 ) × Hom(V2 /V1 , V1 ) AG /AQ ∼ = GL(V1 ) γ
ww Ker XG G
V2 E E Im X V1 0
zz
induction
p.v.
can. parab.
mean values
geometric side
reordering
examples
G = Sp(V , ω), dim V = 6, γ = exp X subregular unipotent: [4, 2] Canonical flag: 3
V 2
V+ = Ker X = Ker X + Im X ,
V+
V0 = Ker X 2 ∩ Im X = Ker X + Im X 2 = V0⊥ , V− = Ker X ∩ Im X 2 = Im X 3 = V+⊥ . Isom. X : V+ /V0 → V0 /V− , X 2 : V /V+ → V− . Symm. bil. forms b+ on V+ /V0 , b− on V0 /V− : b+ (u, v ) = ω(u, Xv ) = b− (Xu, Xv ).
V0
V− 0
induction
p.v.
can. parab.
mean values
geometric side
reordering
examples
G = Sp(V , ω), dim V = 6, γ = exp X subregular unipotent: [4, 2] Canonical flag: 3
V 2
V+ = Ker X = Ker X + Im X , V0 = Ker X 2 ∩ Im X = Ker X + Im X 2 = V0⊥ , V− = Ker X ∩ Im X 2 = Im X 3 = V+⊥ . X2
V+ Im X V0
Isom. X : V+ /V0 → V0 /V− , : V /V+ → V− . Symm. bil. forms b+ on V+ /V0 , b− on V0 /V− :
Ker X
b+ (u, v ) = ω(u, Xv ) = b− (Xu, Xv ).
0
Nonisotropic lines Im X /V0 for b+ , Ker X /V− for b− ,
V−
induction
p.v.
can. parab.
mean values
geometric side
reordering
examples
G = Sp(V , ω), dim V = 6, γ = exp X subregular unipotent: [4, 2] Canonical flag: 3
V 2
V+ = Ker X = Ker X + Im X , V0 = Ker X 2 ∩ Im X = Ker X + Im X 2 = V0⊥ , V− = Ker X ∩ Im X 2 = Im X 3 = V+⊥ . X2
V+ U+ Im X W+ V0
Isom. X : V+ /V0 → V0 /V− , : V /V+ → V− . Symm. bil. forms b+ on V+ /V0 , b− on V0 /V− :
U− Ker X W−
b+ (u, v ) = ω(u, Xv ) = b− (Xu, Xv ).
0
Nonisotropic lines Im X /V0 for b+ , Ker X /V− for b− , Isotropic lines U+ /V0 , W+ /V0 for split b+ , U− /V− , W− /V− for split b− . ⊥ = U , XW = W ⊥ = W . XU+ = U+ − + − +
V−
induction
p.v.
can. parab.
mean values
geometric side
reordering
examples
P.V.: Hom(V /V+ , V0 /V− ) × Quad(V0 /V− ) Parabolics P with γ ∈ Pinfl : ll5 ∅ lll ::: l l l :: lll :: lll l l :: ll l l l
(Ker X , Im X )
66 66 66 66 66
(V0 )
D
(Ker X , V0 , Im X ) N′
66 66 66 66 66
(V− , V+ )
(U− , U+ ) (W− , W+ )
(V− , U− , U+ , V+ )
(V− , V0 , V+ )
(V− , W− , W+ , V+ )
given by arrows except for (U− , U+ ): n′ = {Z ∈ n | ZV ⊂ U− , ZU+ = 0}, for (V− , U− , U+ , V+ ): n′ = {Z ∈ n | ZU+ ⊂ V− , ZV+ ⊂ U− }, for (W− , W+ ) and (V− , W− , W+ , V+ ) by analogy.