The trace formula and prehomogeneous vector spaces

Report 0 Downloads 66 Views
induction

p.v.

can. parab.

mean values

geometric side

reordering

The trace formula and prehomogeneous vector spaces Werner Hoffmann Bielefeld University, SFB 701

Simons Symposium on Families of Automorphic Forms and the Trace Fromula January 29, 2014

examples

induction

p.v.

can. parab.

mean values

geometric side

reordering

Induction of conjugacy classes Consider connected linear algebraic groups over a field F and geometric conjugacy classes. Theorem (Lusztig-Spaltenstein for unipotent classes, H.) Let P be a parabolic subgroup of a reductive group G with Levi decomposition P = MN, and C a conjugacy class in M. Then there is a unique dense P-conjugacy class C ′ in CN and a ˜ in G such that C ˜ ∩ P = C ′. unique conjugacy class C S P P ′ ˜ = IndG Notation C P C , C = InflM C , Pinfl = C InflM C

examples

induction

p.v.

can. parab.

mean values

geometric side

reordering

examples

Induction of conjugacy classes Consider connected linear algebraic groups over a field F and geometric conjugacy classes. Theorem (Lusztig-Spaltenstein for unipotent classes, H.) Let P be a parabolic subgroup of a reductive group G with Levi decomposition P = MN, and C a conjugacy class in M. Then there is a unique dense P-conjugacy class C ′ in CN and a ˜ in G such that C ˜ ∩ P = C ′. unique conjugacy class C S P P ′ ˜ = IndG Notation C P C , C = InflM C , Pinfl = C InflM C Theorem (Lusztig-Spaltenstein, H.)

G If M is a Levi component of both P and Q, then IndG P C = IndQ C . Given γ ∈ G , there are only finitely many P such that γ ∈ Pinfl .

induction

p.v.

can. parab.

mean values

geometric side

reordering

examples

Prehomogeneous varieties Definition • A prehomogeneous G -variety is an irreducible variety V with an algebraic G -action such that there exists a dense G -orbit O. • It is called special if every relatively G -invariant rational function (defined over any extension of F ) is constant. • (V , G ) is called a prehomogeneous vector space if V is a vector space and the G -action is linear. • It is called regular if V ∗ is prehomogeneous and dp/p : O → V ∗ is a dominant morphism for some relative invariant p. p(gx) = χ(g )p(x).

induction

p.v.

can. parab.

mean values

geometric side

reordering

examples

Prehomogeneous varieties Definition • A prehomogeneous G -variety is an irreducible variety V with an algebraic G -action such that there exists a dense G -orbit O. • It is called special if every relatively G -invariant rational function (defined over any extension of F ) is constant. • (V , G ) is called a prehomogeneous vector space if V is a vector space and the G -action is linear. • It is called regular if V ∗ is prehomogeneous and dp/p : O → V ∗ is a dominant morphism for some relative invariant p. p(gx) = χ(g )p(x). Zeta integral (F number field, A ring of adeles): Z X φ(g ξ) dg |χ1 (g )|s1 . . . |χr (g )|sr Z (φ, s1 , . . . , sr ) = G (A)/G (F )

ξ∈O(F )

induction

p.v.

can. parab.

mean values

geometric side

reordering

Canonical parabolic subgroups G reductive, char F = 0. Jacobson-Morozov: ∀ X ∈ g nilpotent, ∃ H, Y ∈ g such that [H, X ] = 2X ,

[H, Y ] = −2Y ,

[X , Y ] = H.

examples

induction

p.v.

can. parab.

mean values

geometric side

reordering

Canonical parabolic subgroups G reductive, char F = 0. Jacobson-Morozov: ∀ X ∈ g nilpotent, ∃ H, Y ∈ g such that [H, Y ] = −2Y ,

[H, X ] = 2X ,

[X , Y ] = H.

Canonical parabolic of X and of exp X ∈ G (F ): M q= gn , Q = NormG q, n≥0

where gn = {Z ∈ g | [H, Z ] = nZ }.

examples

induction

p.v.

can. parab.

mean values

geometric side

reordering

Canonical parabolic subgroups G reductive, char F = 0. Jacobson-Morozov: ∀ X ∈ g nilpotent, ∃ H, Y ∈ g such that [H, Y ] = −2Y ,

[H, X ] = 2X ,

[X , Y ] = H.

Canonical parabolic of X and of exp X ∈ G (F ): M q= gn , Q = NormG q, n≥0

where gn = {Z ∈ g | [H, Z ] = nZ }. Theorem (Vinberg, H.) L L Let u = n≥2 gn , u′ = [u, u] = n>2 gn . Then u/u′ is a regular prehomogeneous vector space under L = CentG H.

examples

induction

p.v.

can. parab.

mean values

geometric side

reordering

Mean value formula Theorem (Siegel/Weil/Ono) If O is a special G -homogeneous variety over a number field F with trivial π1 (O(C)), π2 (O(C)) and X (G ), and if [G (A)ξ ∩ O(F ) : G (F )] is constant on O(F ), then Z Z X φ(g ξ) dg = φ(x) dx. G (A)/G (F ) ξ∈O(F )

G (A)O(F )

examples

induction

p.v.

can. parab.

mean values

geometric side

reordering

Mean value formula Theorem (Siegel/Weil/Ono) If O is a special G -homogeneous variety over a number field F with trivial π1 (O(C)), π2 (O(C)) and X (G ), and if [G (A)ξ ∩ O(F ) : G (F )] is constant on O(F ), then Z Z X φ(g ξ) dg = φ(x) dx. G (A)/G (F ) ξ∈O(F )

G (A)O(F )

Conjecture There is a normal unipotent subgroup N C of P such that, for γ ∈ C ′ = InflP C , all elements of γN C ∩ C ′ have the same canonical parabolic and γN/N C is special under PγN .

examples

induction

p.v.

can. parab.

mean values

geometric side

reordering

The geometric side of the trace formula Always write G for G (F ) and G for G (A). Exception: K a maximal compact subgroup of G such that G (F∞ )K is open and G = PK for every parabolic subgroup P. G1 the maximal closed normal subgroup with torsion-free abelian quotient.

examples

induction

p.v.

can. parab.

mean values

geometric side

reordering

The geometric side of the trace formula Always write G for G (F ) and G for G (A). Exception: K a maximal compact subgroup of G such that G (F∞ )K is open and G = PK for every parabolic subgroup P. G1 the maximal closed normal subgroup with torsion-free abelian quotient. Representation RP of G1 in L2 (NP\G1 ): Z KP (x, y )φ(y ) dy RP (f )φ (x) = G \G1

for f ∈ Cc∞ (G1 ), φ ∈ L2 (NP\G1 ), where X Z f (x −1 γny ) dn. KP (x, y ) = γ∈P/N

N

examples

induction

p.v.

can. parab.

mean values

geometric side

Truncation parameter TP ∈ aP = Lie(P/P1 ) Modular character ∆P : P → R+

reordering

examples

induction

p.v.

can. parab.

mean values

geometric side

reordering

Truncation parameter TP ∈ aP = Lie(P/P1 ) Modular character ∆P : P → R+ For P maximal: Let −ˆ τPT be the characteristic function of {p ∈ P | ∆P (p) > ∆P (exp TP )}K For general P, τˆPT (x) =

Y

P ′ ⊃P P ′ max.

τˆPT′ (x)

examples

induction

p.v.

can. parab.

mean values

geometric side

reordering

Truncation parameter TP ∈ aP = Lie(P/P1 ) Modular character ∆P : P → R+ For P maximal: Let −ˆ τPT be the characteristic function of {p ∈ P | ∆P (p) > ∆P (exp TP )}K For general P, τˆPT (x) =

Y

τˆPT′ (x)

P ′ ⊃P P ′ max.

Compatible family T = (TP )P : T ˆPT (x). τˆγPγ −1 (γx) = τ

examples

induction

p.v.

can. parab.

mean values

Arthur’s trace distribution: Z J T (f ) =

G \G1

X P

geometric side

KP (x, x)ˆ τPT (x) dx

reordering

examples

induction

p.v.

can. parab.

mean values

Arthur’s trace distribution: Z J T (f ) =

G \G1

X

geometric side

reordering

KP (x, x)ˆ τPT (x) dx

P

For geometric conjugacy class C in G , define JCT (f ) using X Z f (x −1 γny ) dn. KP,C (x, y ) = γ∈P/N IndG γ=C

N

Conjecture XZ C

hence

G \G1

X KP,C (x, x)ˆ τPT (x) dx < ∞,

J T (f ) =

P

P

C

JCT (f ).

examples

induction

p.v.

can. parab.

mean values

geometric side

reordering

examples

Reordering the unipotent contribution C a unipotent geometric conjugacy class. Z Z X X Z T JC (f ) = f (x −1 γnn′ x) dn′ dn τPT (x) dx. G \G1 P

γ∈P/N IndG γ=C

N/Nγ



induction

p.v.

can. parab.

mean values

geometric side

reordering

examples

Reordering the unipotent contribution C a unipotent geometric conjugacy class. Z Z X X Z T JC (f ) = f (x −1 γnn′ x) dn′ dn τPT (x) dx. G \G1 P

γ∈P/N IndG γ=C

N/Nγ



R P For γ ∈ D with InflP D = D ′ replace γN/ND by (D ′ ∩γN)N D /N D using mean-value formula. Ignoring convergence: Z Z X X X T f (x −1 γn′ x) dn′ τPT (x) dx, JC (f ) = G \G1 P D ′ ⊂C ∩P γ∈D ′ N D /N D

where D = D ′ N/N.

ND

induction

p.v.

can. parab.

mean values

geometric side

reordering

examples

Collect pairs (P, D ′ ) with given N ′ = N D , collect cosets γN D with given canonical parabolic Q (abbreviated γ ∈ Qcan ): Z XX X XZ T JC (f ) = f (x −1 γn′ x) dn′ τPT (x) dx. G \G1 Q N ′ ⊂Q γ∈(C ∩Q )N ′ /N ′ can

N′ P γ∈Pinfl N γ =N ′

induction

p.v.

can. parab.

mean values

geometric side

reordering

examples

Collect pairs (P, D ′ ) with given N ′ = N D , collect cosets γN D with given canonical parabolic Q (abbreviated γ ∈ Qcan ): Z XX X XZ T JC (f ) = f (x −1 γn′ x) dn′ τPT (x) dx. G \G1 Q N ′ ⊂Q γ∈(C ∩Q )N ′ /N ′ can

N′ P γ∈Pinfl N γ =N ′

Fix a canonical parabolic Q for C : Z Z X X T JC (f ) = Q\G1

N ′ ⊂Q γ∈(C ∩Qcan )N ′ /N ′

N′

f (x −1 γn′ x) dn′ χT γN ′ (x) dx,

where χT γN ′ (x) =

X

P γ∈Pinfl γ N =N ′

τPT (x).

induction

p.v.

can. parab.

mean values

geometric side

reordering

examples

Let JCT,N ′ (f , λ) with λ ∈ a∗Q,C be the contribution from fixed N ′ T (x)−λ , where aT (qk) = exp(−T )qQ1 for with damping factor aQ Q Q q ∈ Q, k ∈ K. For example, the truncated zeta integral Z X T T aQ JC ,{1} (f , λ) = (l)−λ−2ρU/U ′ fU ′ (l −1 ξl) χT ξ (l) dl, L\L∩G1

ξ∈C ∩U/U ′

where U = exp u = C ∩ Qcan , U ′ = exp u′ = [U, U] and Z Z ′ f (k −1 xu ′ k) du ′ dk (x ∈ U/U ′ ). fU (x) = K

U′

induction

p.v.

can. parab.

mean values

geometric side

reordering

examples

Let JCT,N ′ (f , λ) with λ ∈ a∗Q,C be the contribution from fixed N ′ T (x)−λ , where aT (qk) = exp(−T )qQ1 for with damping factor aQ Q Q q ∈ Q, k ∈ K. For example, the truncated zeta integral Z X T T aQ JC ,{1} (f , λ) = (l)−λ−2ρU/U ′ fU ′ (l −1 ξl) χT ξ (l) dl, L\L∩G1

ξ∈C ∩U/U ′

where U = exp u = C ∩ Qcan , U ′ = exp u′ = [U, U] and Z Z ′ f (k −1 xu ′ k) du ′ dk (x ∈ U/U ′ ). fU (x) = K

U′

Theorem (Wakatsuki-H.) For classical groups of absolute rank ≤ 2, the above transformation of JCT (f ) is valid, JCT,N ′ (f , λ) converges for Re λ ∈ (a∗Q )+ and can be continued meromorphically.

induction

p.v.

can. parab.

mean values

geometric side

reordering

examples

Examples G = Sp(V , ω), dim V = 4, γ = exp X subregular unipotent: [2, 2] Canonical flag: V0 = Ker X = Im X .

V

Isomorphism X : V /V0 → V0 . Symmetric bilinear forms b+ on V /V0 , b− on V0 :

V0

b+ (u, v ) = ω(u, Xv ) = b− (Xu, Xv ). 0

induction

p.v.

can. parab.

mean values

geometric side

reordering

examples

Examples G = Sp(V , ω), dim V = 4, γ = exp X subregular unipotent: [2, 2] V

Canonical flag: V0 = Ker X = Im X . Isomorphism X : V /V0 → V0 .

U+ V0

Symmetric bilinear forms b+ on V /V0 , b− on V0 : b+ (u, v ) = ω(u, Xv ) = b− (Xu, Xv ).

W+

U−

W− 0

Isotropic lines U+ /V0 , W+ /V0 for split b+ , U− , W− for split b− . ⊥ = U , XW = W ⊥ = W . XU+ = U+ − + − +

induction

p.v.

can. parab.

mean values

geometric side

reordering

examples

Examples G = Sp(V , ω), dim V = 4, γ = exp X subregular unipotent: [2, 2] V

Canonical flag: V0 = Ker X = Im X . Isomorphism X : V /V0 → V0 .

U+ V0

Symmetric bilinear forms b+ on V /V0 , b− on V0 : b+ (u, v ) = ω(u, Xv ) = b− (Xu, Xv ).

W+

U−

W− 0

Isotropic lines U+ /V0 , W+ /V0 for split b+ , U− , W− for split b− . ⊥ = U , XW = W ⊥ = W . XU+ = U+ − + − + ❅ Parabolics P with γ ∈ Pinfl : 7∅h ❅ −1 ′ (arrows N → N ) 0❅ 0 (U− , U+ ) (V0 ) (W− , W+ ) 1❅ ❅ P. V.: Quad(V0 ), AG /AQ ∼ = SO(V0 , b− ). γ

induction

p.v.

can. parab.

mean values

geometric side

reordering

examples

G = GL(V ), dim V = 4, γ = exp X subregular unipotent: [3, 1] V

Canonical flag: V1 = Ker X ∩ Im X = Im X 2 , V2 = Ker X + Im X = Ker X 2 .

ww Ker XG G

V2 E E Im X V1 0

zz

induction

p.v.

can. parab.

mean values

geometric side

reordering

examples

G = GL(V ), dim V = 4, γ = exp X subregular unipotent: [3, 1] V

Canonical flag: V1 = Ker X ∩ Im X = Im X 2 , V2 = Ker X + Im X = Ker X 2 . Parabolics P with γ ∈ Pinfl (arrows N → N ′ ):

(Im X )

jj4 ∅ jT?TT jjjj ???TTTTTTT j j j TT  jjj

?? ?

(V1 )

? 

?? ?

(V2 )

 

_?? ?

(Ker X )  

(V1 , Im X ) (V1 , V2 ) (Ker X , V2 ) P.V.: Hom(V /V2 , V2 /V1 ) × Hom(V2 /V1 , V1 ) AG /AQ ∼ = GL(V1 ) γ

ww Ker XG G

V2 E E Im X V1 0

zz

induction

p.v.

can. parab.

mean values

geometric side

reordering

examples

G = Sp(V , ω), dim V = 6, γ = exp X subregular unipotent: [4, 2] Canonical flag: 3

V 2

V+ = Ker X = Ker X + Im X ,

V+

V0 = Ker X 2 ∩ Im X = Ker X + Im X 2 = V0⊥ , V− = Ker X ∩ Im X 2 = Im X 3 = V+⊥ . Isom. X : V+ /V0 → V0 /V− , X 2 : V /V+ → V− . Symm. bil. forms b+ on V+ /V0 , b− on V0 /V− : b+ (u, v ) = ω(u, Xv ) = b− (Xu, Xv ).

V0

V− 0

induction

p.v.

can. parab.

mean values

geometric side

reordering

examples

G = Sp(V , ω), dim V = 6, γ = exp X subregular unipotent: [4, 2] Canonical flag: 3

V 2

V+ = Ker X = Ker X + Im X , V0 = Ker X 2 ∩ Im X = Ker X + Im X 2 = V0⊥ , V− = Ker X ∩ Im X 2 = Im X 3 = V+⊥ . X2

V+ Im X V0

Isom. X : V+ /V0 → V0 /V− , : V /V+ → V− . Symm. bil. forms b+ on V+ /V0 , b− on V0 /V− :

Ker X

b+ (u, v ) = ω(u, Xv ) = b− (Xu, Xv ).

0

Nonisotropic lines Im X /V0 for b+ , Ker X /V− for b− ,

V−

induction

p.v.

can. parab.

mean values

geometric side

reordering

examples

G = Sp(V , ω), dim V = 6, γ = exp X subregular unipotent: [4, 2] Canonical flag: 3

V 2

V+ = Ker X = Ker X + Im X , V0 = Ker X 2 ∩ Im X = Ker X + Im X 2 = V0⊥ , V− = Ker X ∩ Im X 2 = Im X 3 = V+⊥ . X2

V+ U+ Im X W+ V0

Isom. X : V+ /V0 → V0 /V− , : V /V+ → V− . Symm. bil. forms b+ on V+ /V0 , b− on V0 /V− :

U− Ker X W−

b+ (u, v ) = ω(u, Xv ) = b− (Xu, Xv ).

0

Nonisotropic lines Im X /V0 for b+ , Ker X /V− for b− , Isotropic lines U+ /V0 , W+ /V0 for split b+ , U− /V− , W− /V− for split b− . ⊥ = U , XW = W ⊥ = W . XU+ = U+ − + − +

V−

induction

p.v.

can. parab.

mean values

geometric side

reordering

examples

P.V.: Hom(V /V+ , V0 /V− ) × Quad(V0 /V− ) Parabolics P with γ ∈ Pinfl : ll5 ∅ lll  ::: l l l ::  lll ::  lll  l l ::  ll  l l  l

(Ker X , Im X )

66 66 66 66 66

(V0 )

D       

(Ker X , V0 , Im X ) N′

66 66 66 66 66

(V− , V+ )

(U− , U+ ) (W− , W+ )

       (V− , U− , U+ , V+ )

(V− , V0 , V+ )

(V− , W− , W+ , V+ )

given by arrows except for (U− , U+ ): n′ = {Z ∈ n | ZV ⊂ U− , ZU+ = 0}, for (V− , U− , U+ , V+ ): n′ = {Z ∈ n | ZU+ ⊂ V− , ZV+ ⊂ U− }, for (W− , W+ ) and (V− , W− , W+ , V+ ) by analogy.