Theorem 1

Report 9 Downloads 67 Views
Applied Mathematics and Computation 208 (2009) 58–68

Contents lists available at ScienceDirect

Applied Mathematics and Computation journal homepage: www.elsevier.com/locate/amc

Delay-range-dependent stabilization of uncertain dynamic systems with interval time-varying delays O.M. Kwon a,*, Ju H. Park b a b

School of Electrical and Computer Engineering, Chungbuk National University, 410 SungBong-Ro, Heungduk-gu, Cheongju 361-763, Republic of Korea Department of Electrical Engineering, Yeungnam University, 214-1 Dae-Dong, Kyongsan 712-749, Republic of Korea

a r t i c l e

i n f o

Keywords: Stabilization Interval time-varying delays LMI Lyapunov’s method

a b s t r a c t In this paper, the problem of delay-range-dependent stabilization criterion for uncertain dynamic systems with time-varying delays is considered. The time-varying delays considered is assumed to be belong to a given interval in which lower bound of delay is not restricted to zero. By constructing a suitable augmented Lyapunov’s functional and utilizing free weight matrices, the criterion for stabilization is established in terms of linear matrix inequalities. Three numerical examples are given to show the effectiveness of proposed method. Ó 2008 Elsevier Inc. All rights reserved.

1. Introduction Time delays often occur in many industrial systems such as chemical processes, biological systems, population dynamics, neural networks, large-scale systems, network control systems, and so on. The occurrence of the time delays may deteriorate system performance or even cause instability. Therefore, stability analysis and controller synthesis have been one of the most challenging issues [1–3]. Since delay-dependent stability criteria are less conservative than delay-independent ones when the size of time delays is small, many researchers have focused on delay-dependent stabilization and stability [4–7]. In delay-dependent stabilization and stability criteria, the main concern is to enlarge the feasible region of criteria for guaranteeing asymptotic stability of time-delay systems in a given time-delay interval. To do this, Park [8] proposed a new bounding lemma to reduce the conservatism of the stability criteria by introducing free variables in cross terms. Moon [9] proposed a stabilizing controller design method of uncertain time-delay systems by utilizing Park’s lemma [8]. Fridman and Shaked [10,11] presented a descriptor approach to design a stabilizing controller of time-delay systems. Yue [12] utilized neutral model transformation to obtain stability criteria for systems with discrete and distributed delays. Kwon and Park [13] proposed a method of designing controller for uncertain time-delay systems by introducing free weight variables in transformation operator. Recently, by adding zero equations with free variables, an improved stability or stabilization method has been investigated [6,14–17]. In Ref. [15], augmented Lyapunov’s functionals were proposed to increase the feasible region of stability criteria by taking integral terms of states as augmented ones. On the other hand, the stability analysis of dynamic systems with interval time-varying delays has been a focused topic of theoretical and practical importance [6,18,19] in very recent years. Interval time-varying delay means that a time delay varies in an interval in which the lower bound is not restricted to be zero. A typical example of dynamic systems with interval time-varying delays is networked control systems [20]. However, few results have been investigated to the problem of stabilization and stability for uncertain dynamic system with interval time-varying delays. * Corresponding author. E-mail address: [email protected] (O.M. Kwon). 0096-3003/$ - see front matter Ó 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2008.11.010

O.M. Kwon, J.H. Park / Applied Mathematics and Computation 208 (2009) 58–68

59

In this paper, we propose delay-range-dependent stabilization criterion for systems with interval time-varying delays and norm bounded parameter uncertainties. By constructing a suitable augmented Lyapunov’s functional, delay-range-dependent stabilization criterion is derived in terms of LMIs which can be solved efficiently by using the interior-point algorithms [21]. Also, to enlarge the feasibility region of criteria, zero equations with free weight matrices are utilized in time-derivative of the Lyapunov functional. Through three numerical examples, the effectiveness of the proposed methods are shown. In the sequel, the following notation will be used. Rn is the n-dimensional Euclidean space. Rmn denotes the set of m  n real matrix. H denotes the symmetric part. X > 0ðX P 0Þ means that X is a real symmetric positive definitive matrix (positive semi-definite). I denotes the identity matrix with appropriate dimensions. k  k refers to the induced matrix 2-norm. diagf  g denotes the block diagonal matrix. Cn;h ¼ Cð½h; 0; Rn Þ denotes the Banach space of continuous functions mapping the interval ½h; 0 into Rn , with the topology of uniform convergence. 2. Problem statements Consider the following uncertain dynamic systems with time-varying delays

_ xðtÞ ¼ ðA þ DAðtÞÞxðtÞ þ ðAd þ DAd ðtÞÞxðt  hðtÞÞ þ ðB þ DBðtÞÞuðtÞ; xðsÞ ¼ /ðsÞ;

s 2 ½hU ; 0;

ð1Þ

where xðtÞ 2 Rn is the state vector, uðtÞ 2 Rm is the control input, A; Ad , and B are known constant matrices with appropriate dimensions, /ðsÞ 2 Cn;h is a given continuous vector valued initial function, and DAðtÞ; DAd ðtÞ and DBðtÞ are the uncertainties of system matrices of the form

½ DAðtÞ DAd ðtÞ DBðtÞ  ¼ DFðtÞ½ E1

E2

E3 

ð2Þ

in which the time-varying nonlinear function FðtÞ satisfies

F T ðtÞFðtÞ 6 I

8t P 0:

ð3Þ

The delays, hðtÞ, are time-varying continuous functions that satisfies

_ hðtÞ 6 hD ;

0 6 hL 6 hðtÞ 6 hU ;

ð4Þ

where hL and hU are positive constants and hD is any constant value. For system (1), we design a memoryless state-feedback controller

uðtÞ ¼ KxðtÞ;

ð5Þ

mn

where K 2 R is a constant matrix to be designed later. With controller (5), system (1) can be rewritten as

_ xðtÞ ¼ ðA þ BKÞxðtÞ þ Ad xðt  hðtÞÞ þ DpðtÞ; pðtÞ ¼ FðtÞqðtÞ;

ð6Þ

qðtÞ ¼ ðE1 þ E3 KÞxðtÞ þ E2 xðt  hðtÞÞ: The purpose of this paper is to present a delay-dependent stabilization criterion for system (6). Before deriving our main results, we need the following facts and lemma. Fact 1. (Schur complement) Given constant symmetric matrices R1 ; R2 ; R3 where R1 ¼ RT1 and 0 < R2 ¼ RT2 , then R1 þ RT3 R1 2 R3 < 0 if and only if

"

#

R1 RT3 < 0 or R3 R2



R2

RT3



R3 < 0: R1

Fact 2. For any real vectors a; b and any matrix Q > 0 with appropriate dimensions, it follows that T

2aT b 6 aT Qa þ b Q 1 b: Lemma 1 [22]. For any constant matrix M 2 Rnn ; M ¼ M T > 0, scalar c > 0, vector function x : ½0; c ! Rn such that the integrations concerned are well defined, then

Z 0

c

T Z xðsÞ ds M 0

c

 Z xðsÞ ds 6 c 0

c

xT ðsÞMxðsÞ ds:

ð7Þ

60

O.M. Kwon, J.H. Park / Applied Mathematics and Computation 208 (2009) 58–68

3. Main results In this section, we propose a new delay-dependent stabilization criterion for systems (6) with interval time-varying delays. For simplicity, the notations of several matrices are defined as follows:

 R T t fT ðtÞ ¼ xT ðtÞ xT ðt  hL Þ xT ðt  hðtÞÞ xT ðt  hU Þ x_ T ðtÞ xðsÞ ds thL fT1 ðtÞ ¼ ½ xT ðtÞ x_ T ðtÞ ;

R

thL thðtÞ

xðsÞ ds

T

R thðtÞ thU

 T xðsÞ ds pT ðtÞ ;

fT2 ðtÞ ¼ ½ xT ðtÞ xT ðt  hðtÞÞ x_ T ðtÞ pT ðtÞ ; fT3 ðtÞ ¼ ½ xT ðtÞ xT ðt  hðtÞÞ l; U T1 ¼ ½ I U T2 U T3 U T4

0 0 0 0 0 0 0 0 ;

¼ ½0 0 0 0 0 I

0 0 0 ;

¼ ½0 0 0 0 0 0 I

0 0 ;

¼ ½0 0 0 0 0 0 0 I

0 ;

R ¼ Rði;jÞ ði; j ¼ 1; . . . ; 9Þ; Rð1;1Þ ¼ AP2 þ P2 AT þ BV þ V T BT þ R1 þ R2 þ R3 þ h2U M11  M22 þ ðhU  hL Þ2 N11 þ PT3 þ P 3 þ S2 þ ST2 ; Rð1;3Þ ¼ Ad P2 þ M22  P3 þ PT4  P5 þ P7  S2 ;

Rð1;2Þ ¼ P5 þ S4 ; Rð1;4Þ ¼ P7  S4 ;

Rð1;5Þ ¼ P1  P2 þ P 2 AT þ V T BT þ h2U M12 þ ðhU  hL Þ2 N12 þ S1 ; Rð1;6Þ ¼ MT12 þ S3 ;

Rð1;7Þ ¼ S5 ;

Rð2;2Þ ¼ R1  N22 ;

Rð2;3Þ ¼ N 22 þ P T6 ;

Rð2;7Þ ¼ NT12 þ S6 ;

Rð2;8Þ ¼ S6 ; Rð2;9Þ ¼ 0;

Rð1;8Þ ¼ S5 ;

Rð1;9Þ ¼ P 2 D;

Rð2;4Þ ¼ 0;

Rð2;5Þ ¼ 0;

Rð2;6Þ ¼ ST5 ;

Rð3;3Þ ¼ ð1  hD ÞR2  2M22  2N22  P4  PT4  P6  PT6 þ P8 þ PT8 þ hD ðG1 þ G2 þ G3 þ G4 Þ; Rð3;5Þ ¼ P2 ATd ;

Rð3;4Þ ¼ M22 þ N22  P8 ; Rð3;7Þ ¼ NT12  S5 ;

Rð3;8Þ ¼ MT12  NT12  S5 ;

Rð4;4Þ ¼ R3  M22  N22 ; Rð4;8Þ ¼

MT12

þ

NT12

Rð3;6Þ ¼ MT12  S3 ;

 S6 ;

Rð3;9Þ ¼ 0;

Rð4;6Þ ¼ ST5 ;

Rð4;5Þ ¼ 0;

Rð4;7Þ ¼ S6 ;

Rð4;9Þ ¼ 0;

Rð5;5Þ ¼ 2P2 þ hU Q 1 þ ðhU  hL ÞQ 2 þ h2U M22 þ ðhU  hL Þ2 N22 ; Rð5;6Þ ¼ S2 ;

Rð5;7Þ ¼ S4 ;

Rð5;8Þ ¼ S4 ; Rð5;9Þ ¼ DP2 ;

Rð6;7Þ ¼ 0;

Rð6;6Þ ¼ M11 ;

Rð6;8Þ ¼ 0;

Rð6;9Þ ¼ 0;

Rð7;7Þ ¼ N11 ;

Rð7;8Þ ¼ 0; Rð7;9Þ ¼ 0; Rð8;8Þ ¼ M11  N11 ; Rð8;9Þ ¼ 0; W1 ¼ ½ E1 P2 þ E3 V 0 E2 P2 0 0 0 0 0 0 ; h

pffiffiffiffiffiffi 

pffiffiffiffiffiffi 

pffiffiffiffiffiffi  pffiffiffiffiffiffi  i hD ST5 hD ST5 ; U4

h D S2 h D S3 N1 ¼ U 1 U2 U3 N2 ¼ diagf G1 ; G2 ; G3 ; G4 g; "

T 1

P ¼

I

Rð9;9Þ ¼ aP2 ;

0 0 0 0 0 0 0 0 0 0 0 0 0

#

; 0 0 0 0 0 0 0 0 0 0 0 2 3 " # " # S1 S2 S4 M 11 M 12 N11 N 12 6 7 ; N¼ ; S ¼ 4 H S3 S5 5; M¼ H M 22 H N 22 H H S6 " # " # " # X1 X2 Y1 Y2 Z1 Z2 ; Y¼ ; Z¼ : X¼ H X2 H Y2 H Z2 0 0

I

ð8Þ Now, we have the following theorem. Theorem 1. For given positive scalars a; hL ; hU , and any scalar hD , system (6) under the control uðtÞ ¼ VP 1 2 xðtÞ is robustly stable for hL 6 hðtÞ 6 hU if there exist positive definite matrices P i ði ¼ 1; 2Þ; Ri ði ¼ 1; 2; 3Þ; Q i ði ¼ 1; 2Þ; Gi ði ¼ 1; . . . ; 4Þ; Si ði ¼ 1; 3; 6Þ; M ii ði ¼ 1; 2Þ; N ii ði ¼ 1; 2Þ; X i ði ¼ 1; 3Þ; Y i ði ¼ 1; 3Þ; Z i ði ¼ 1; 3Þ, and any matrices V; Pi ; ði ¼ 3; . . . ; 8Þ; M 12 ; N 12 ; S2 ; S4 ; S5 ; X 2 ; Y 2 ; Z 2 , satisfying the following LMIs

O.M. Kwon, J.H. Park / Applied Mathematics and Computation 208 (2009) 58–68

2

R

R

3

WT1

NT1

W1

NT2 3 NT1

6 4 H a1 P2 H H 2 T

7 T 0 5 þ P1 ðhL X þ ðhU  hL ÞZÞP1 < 0;

ð9Þ

6 7 T 4 H a1 P2 0 5 þ P1 ðhU X þ ðhU  hL ÞYÞP1 < 0; T H H N2 2 2 2 " #3 " #3 " # P3 P5 P7 6X 7 6Y 7 6Z 6 7 > 0; 6 7 > 0; 6 P P P8 4 6 4 5 4 5 4 Q1

H M > 0;

61

Q2

H N > 0;

H

ð10Þ 3 7 7 > 0; 5

ð11Þ

Q1 þ Q2

S > 0:

ð12Þ

Proof. For positive definite matrices P i ði ¼ 1; 2Þ; Ri ði ¼ 1; 2; 3Þ; Q i ði ¼ 1; 2Þ; M ii ði ¼ 1; 2Þ; N ii ði ¼ 1; 2Þ; Si ði ¼ 1; 3; 6Þ, and any matrices M 12 ; N 12 ; S2 ; S4 ; S5 ; S7 ; S8 ; S9 , let us consider the Lyapunov–Krasovskii functional candidate



6 X

Vi

ð13Þ

i¼1

where

V 1 ¼ fT1 ðtÞEPf1 ðtÞ; Z t Z V2 ¼ xT ðsÞR1 xðsÞ ds þ V3 ¼

Z

thL

Z

t thU

V 4 ¼ hU

Z

s t

t

xT ðsÞR2 xðsÞ ds þ

thðtÞ t

_ x_ T ðuÞQ 1 xðuÞ du ds þ

xT ðsÞR3 xðsÞ ds;

thU

Z

t

_ x_ T ðuÞQ 2 xðuÞ du ds;

s

fT1 ðuÞMf1 ðuÞ du ds;

Z

thL

Z

ð14Þ

t

s

thU

2

t

t s

V 5 ¼ ðhU  hL Þ

thL

thU

Z

thU

Z

Z

fT1 ðuÞNf1 ðuÞ du ds;

3T 2 3 xðtÞ xðtÞ R R 6 t 7 6 t 7 xðsÞ ds 7 S6 thðtÞ xðsÞ ds 7 V6 ¼ 6 4 thðtÞ 5 4 5 R thL R thL xðsÞ ds xðsÞ ds thU thU and, E and P in V 1 are defined as



 I 0 ; 0 0



 P¼

P1 P2

 0 : P2

ð15Þ

From V 1 , we have

  _ xðtÞ V_ 1 ¼ 2fT1 ðtÞPT 0   _ xðtÞ ¼ 2fT1 ðtÞPT _ þ ðA þ BKÞxðtÞ þ Ad xðt  hðtÞÞ þ DpðtÞ xðtÞ

ð16Þ

¼ 2fT2 ðtÞKT PT Cf2 ðtÞ ¼ fT2 ðtÞðKT PT C þ CT PKÞf2 ðtÞ; where





I

0 0 0

0 0

I

0



 ;



0

0

I

0

A þ BK

Ad

I

D

 ;

ð17Þ

and f1 ðtÞ and f2 ðtÞ are defined in (8). An upper bound of time-derivative of V 2 can be obtained as

V_ 2 6 xT ðtÞR1 xðtÞ  xT ðt  hL ÞR1 xðt  hL Þ þ xT ðtÞR2 xðtÞ  ð1  hD ÞxT ðt  hðtÞÞR2 xðt  hðtÞÞ þ xT ðtÞR3 xðtÞ  xT ðt  hU ÞR3 xðt  hU Þ:

ð18Þ

62

O.M. Kwon, J.H. Park / Applied Mathematics and Computation 208 (2009) 58–68

We can obtain the results of calculation of V_ 3 as follows:

_  V_ 3 ¼ hU x_ T ðtÞQ 1 xðtÞ

t

_ ds  x_ T ðsÞQ 1 xðsÞ

thðtÞ

Z



Z

thL

_ ds  x_ T ðsÞQ 2 xðsÞ

thðtÞ

Z

Z

thðtÞ

_ ds þ ðhU  hL Þx_ T ðtÞQ 2 xðtÞ _ x_ T ðsÞQ 1 xðsÞ

thU thðtÞ

_ ds: x_ T ðsÞQ 2 xðsÞ

ð19Þ

thU

Calculating V_ 4 leads to

" 2 V_ 4 ¼ hU

6

#T "

_ xðtÞ "

2 hU

xðtÞ

xðtÞ

M11 M12 H

#T "

_ xðtÞ

M11 H

2 R thðtÞ

#"

xðtÞ

#

t

"

xðsÞ

#T "

M11 M12

#"

xðsÞ

#

Z

ds  hU _ _ H M22 xðsÞ xðsÞ 3T " 3 #" # 2Rt #2 R t xðsÞ ds xðsÞ ds M12 xðtÞ M11 M12 thðtÞ thðtÞ 4 5 4 5  R Rt t _ M 22 xðtÞ H M 22 _ ds _ ds xðsÞ xðsÞ

M22

 hU

Z

_ xðtÞ

thðtÞ

thðtÞ

thðtÞ

thU

"

xðsÞ _ xðsÞ

#T "

M11 M12 H

M22

#"

xðsÞ _ xðsÞ

# ds

thðtÞ

3T "

3 #2 R thðtÞ #" " #T " # xðsÞ ds xðsÞ ds M11 M12 xðtÞ M11 M12 xðtÞ thU thU 2 4 5 4 5 ¼ hU  R R thðtÞ thðtÞ _ _ H M22 H M 22 xðtÞ xðtÞ _ ds _ ds xðsÞ xðsÞ thU thU 2 R 3T " 3 #2 R t t M11 M12 xðsÞ ds xðsÞ ds thðtÞ thðtÞ 5 4 5 4 H M22 xðtÞ  xðt  hðtÞÞ xðtÞ  xðt  hðtÞÞ 2 3T " 3 #2 R thðtÞ R thðtÞ M11 M12 xðsÞ ds xðsÞ ds thU thU 4 5 4 5 ¼ fT ðtÞN1 fðtÞ  H M22 xðt  hðtÞÞ  xðt  hU Þ xðt  hðtÞÞ  xðt  hU Þ ð20Þ where

2 6 6 6 6 6 6 6 6 N1 ¼ 6 6 6 6 6 6 6 6 6 4

2

2

hU M 11  M22

M 22

0

hU M 12

0

M T12

0

H

2M22

M 22

0

0

MT12

MT12

H

H

M 22

0

0

0

M T12

H

H

H

hU M 22

0

0

0

H

H

H

H

0

0

0

H

H

H

H

H M 11

H

H

H

H

H

H

M11

H

H

H

H

H

H

H

2

0

0

3

7 07 7 7 07 7 7 7 07 7; 7 07 7 7 07 7 07 5 0

and fðtÞ is defined in (8). Here, Lemma 1 was utilized in obtaining an upper bound of V_ 4 . Similarly, an upper bound of V_ 5 can be obtained as

V_ 5 6 fT ðtÞN2 fðtÞ; where

2 6 6 6 6 6 6 6 6 6 6 N2 ¼ 6 6 6 6 6 6 6 6 6 6 4

ð21Þ

ðhU  hL Þ2 N11

0

0

0

ðhU  hL Þ2 N12

0

0

0

H

N 22

N22

0

0

0

N T12

0

H

H

2N22

N22

0

0

N T12

N T12

H

H

H

N22

0

0

0

NT12

H

H

H

H

ðhU  hL Þ2 N22

0

0

0

H

H

H

H

0

0

0

0 0

H

H

H

H

H

H N11

H

H

H

H

H

H

H

N11

H

H

H

H

H

H

H

H

0

3

7 07 7 7 07 7 7 07 7 7 7 0 7: 7 7 07 7 07 7 7 07 5 0

ð22Þ

63

O.M. Kwon, J.H. Park / Applied Mathematics and Computation 208 (2009) 58–68

Lastly, we have

2 6 6 V_ 6 ¼ 26 4

3T 2

xðtÞ

S1 7 6 7 6 xðsÞ ds thðtÞ 7 4H 5 R thðtÞ R thL H xðsÞ ds þ xðsÞ ds th thðtÞ

S4

S3

S6

H

U

_ ¼ f ðtÞN3 fðtÞ þ 2x ðtÞS2 hðtÞxðt  hðtÞÞ þ 2 T

T

32

3 _ xðtÞ 76 7 _ 6 7 S5 7 54 xðtÞ  xðt  hðtÞÞ þ hðtÞxðt  hðtÞÞ 5

S2

Rt

Z

xðt  hL Þ  xðt  hU Þ !T

t

_ S3 hðtÞxðt  hðtÞÞ þ 2

xðsÞ ds

Z

xðsÞ ds

T

6 f ðtÞN3 fðtÞ þ hD x

_ ST5 hðtÞxðt  hðtÞÞ

T

_ ST5 hðtÞxðt  hðtÞÞ

T ðtÞS2 G1 1 S2 xðtÞ

T

þ hD x ðt  hðtÞÞG1 xðt  hðtÞÞ þ hD Z

þ hD x ðt  hðtÞÞG2 xðt  hðtÞÞ þ hD

!T

thL

xðsÞ ds

thðtÞ

!T

thðtÞ

xðsÞ ds

thU

ST5 G1 4 S5

Z

!T

t

xðsÞ ds

thðtÞ

T

Z

xðsÞ ds

!T

thðtÞ

thU

þ hD

!T

thL thðtÞ

thðtÞ

þ2

Z

Z

Z

ST5 G1 3 S5

thL

S3 G1 2 S3

Z

!

t

xðsÞ ds

thðtÞ

! xðsÞ ds þ hD xT ðt  hðtÞÞG3 xðt  hðtÞÞ

thðtÞ

!

thðtÞ

xðsÞ ds þ hD xT ðt  hðtÞÞG4 xðt  hðtÞÞ;

thU

ð23Þ where

2 6 6 6 6 6 6 6 6 6 6 N3 ¼ 6 6 6 6 6 6 6 6 6 6 6 4

S2 þ ST2

S4

S2

S4

S1

S3

S5

S5

H

0

0

0

0

ST5

S6

S6

H

H

0

0

0

S3

S5

S5

0

ST5

S6

S6

H

H

H

0

H

H

H

H

0

S2

S4

S4

H

H

H

H

H

0

0

0

H

H

H

H

H

H

0

0

H

H

H

H

H

H

H

0

H

H

H

H

H

H

H

H

0

3

7 07 7 7 7 07 7 7 07 7 7 07 7 7 07 7 7 07 7 7 07 5 0

and Fact 2 was utilized in obtaining an upper bound of V_ 6 . As a tool to reduce the conservatism of stabilization criterion, we add the following zero equations with P i ði ¼ 3; . . . ; 8Þ to be chosen as

0 ¼ 2½xT ðtÞP3 þ xT ðt  hðtÞÞP4 ½xðtÞ  xðt  hðtÞÞ  2fT3 ðtÞ



P3

Z

P4

0 ¼ 2½xT ðtÞP5 þ xT ðt  hðtÞÞP6 ½xðt  hL Þ  xðt  hðtÞÞ  2fT3 ðtÞ



t

_ ds; xðsÞ

ð24Þ

thðtÞ

P5

Z

P6

thL

_ ds xðsÞ

ð25Þ

thðtÞ

and

0 ¼ 2½xT ðtÞP 7 þ xT ðt  hðtÞÞP 8 ½xðt  hðtÞÞ  xðt  hU Þ  2fT3 ðtÞ



P7 P8

Z

thðtÞ

_ ds; xðsÞ

ð26Þ

thU

where f3 ðtÞ is defined in (8). The above three zero equations can be represented as

 Z t   Z thL   Z thðtÞ P3 P P _ ds  2fT3 ðtÞ 5 _ ds  2fT3 ðtÞ 7 _ ds; 0 ¼ fT ðtÞN4 fðtÞ  2fT3 ðtÞ xðsÞ xðsÞ xðsÞ P 4 thðtÞ P 6 thðtÞ P8 thU

ð27Þ

64

O.M. Kwon, J.H. Park / Applied Mathematics and Computation 208 (2009) 58–68

where

2 T 6 P3 þ P3 6 6 6 6 H 6 6 6 6 6 H 6 6 N4 ¼ 6 6 6 H 6 6 6 H 6 6 H 6 6 H 6 6 4 H H

P 3 þ PT4 P 5 þ P7

P5 0 H H H H H H H

0

P T6 P 4  PT4

!

1

3 P7

0

0

0

0

0

0

0

0

0

0

0

0

0

B C @ P 6  PT6 A P8 þP 8 þ H H H H H H

PT8

0 H H H H H

07 7 7 7 07 7 7 7 7 07 7 7 7: 7 07 7 7 07 7 07 7 07 7 7 05

ð28Þ

0 0 0 0 0 0 0 0 H 0 0 0 H H 0 0 H H H 0 H H H H 0

Furthermore, for any positive matrices X; Y, and Z with appropriate dimensions, the following equations hold:



Z

t

thðtÞ



Z

thL

thðtÞ



Z

fT3 ðtÞXf3 ðtÞ ds  fT3 ðtÞYf3 ðtÞ ds 

Z

thðtÞ

Z

thðtÞ

thU

t

fT3 ðtÞZf3 ðtÞ ds 

thL

thðtÞ

Z

fT3 ðtÞXf3 ðtÞ ds ¼ hðtÞfT3 ðtÞXf3 ðtÞ 

Z

t

thðtÞ

fT3 ðtÞXf3 ðtÞ ds;

fT3 ðtÞYf3 ðtÞ ds ¼ ðhðtÞ  hL ÞfT3 ðtÞYf3 ðtÞ 

Z

thðtÞ

thðtÞ

thU

thL

fT3 ðtÞZf3 ðtÞ ds ¼ ðhU  hðtÞÞfT3 ðtÞZf3 ðtÞ 

Z

fT3 ðtÞYf3 ðtÞ ds;

ð29Þ ð30Þ

thðtÞ

thU

fT3 ðtÞZf3 ðtÞ ds:

ð31Þ

Since the following inequality holds from (3) and (6),

pT ðtÞpðtÞ 6 qT ðtÞqðtÞ;

ð32Þ

there exist positive matrix P2 and positive scalar a satisfying the following inequality

fT ðtÞWT ðaP2 ÞWfðtÞ  pT ðtÞðaP2 ÞpðtÞ P 0;

ð33Þ

W ¼ ½ E1 þ E3 K 0 E2 0 0 0 0 0 0 :

ð34Þ

where

P 1 2 ;V

Let P2 ¼ ¼ KP 2 ; Pi ¼ P2 Pi P 2 ði ¼ 1; 3; 4; . . . ; 7; 8Þ; Ri ¼ P 2 Ri P 2 ; Q i ¼ P 2 Q i P2 ; Gi ¼ P2 Gi P 2 ; M ij ¼ P2 M ij P 2 ; N ij ¼ P2 N ij P 2 ; Si ¼ P P2 Si P 2 ; X i ¼ P 2 X i P2 ; Y i ¼ P2 Y i P 2 , Z i ¼ P2 Z i P 2 . From (16)–(36) and by applying S-procedure [21], the V_ ¼ 6i¼1 V_ i has a new upper bound as T T T T T 1 T 1 T 1 V_ 6 fT ðtÞ!1 ½R þ U T1 ðhD S2 G1 1 S2 ÞU 1 þ U 2 ðhD S3 G2 S3 ÞU 2 þ U 3 ðhD S5 G3 S5 ÞU 3 þ U 4 ðhD S5 G4 S5 ÞU 4 P2 ðhðtÞX 2 " #3 P3    Z t  7 f3 ðtÞ T 6 X f3 ðtÞ T 1 6 þ ðhðtÞ  hL ÞY þ ðhU  hðtÞÞZÞP2 þ W ðaP2 ÞW!1 fðtÞ  !2 4 !2 ds P4 7 5 _ _ xðsÞ xðsÞ thðtÞ Q1 H 2 2 " #3 " # 3 P5 P7 T   T   Z thðtÞ  Z thL  6Y 7 6Z 7 f3 ðtÞ f3 ðtÞ f3 ðtÞ f3 ðtÞ 7 6 7 !2 6 ! ! ! ds  ds  P P 24 6 5 2 8 4 5 2 xðsÞ _ _ _ _ xðsÞ xðsÞ xðsÞ thU thðtÞ Q2 H H Q1 þ Q2

ð35Þ

where

!1 ¼ diagfP2 ; P2 ; P2 ; P2 ; P2 ; P2 ; P2 ; P2 ; P2 ; g; !2 ¼ diagfP2 ; P2 ; P2 g;

PT2 ¼



I

0 0 0 0 0 0 0 0

0 0

I

0 0 0 0 0 0

 :

ð36Þ

Let T T T T 1 T 1 T 1 T 1 X ¼ R þ U T1 ðhD S2 G1 1 S2 ÞU 1 þ U 2 ðhD S3 G2 S3 ÞU 2 þ U 3 ðhD S5 G3 S5 ÞU 3 þ U 4 ðhD S5 G4 S5 ÞU 4 þ W ðaP 2 ÞW:

ð37Þ

Note that for the delay intervals hL 6 hðtÞ 6 hU ,

X þ PT2 ½hðtÞX þ ðhðtÞ  hL ÞY þ ðhU  hðtÞÞZP2 < 0

ð38Þ

65

O.M. Kwon, J.H. Park / Applied Mathematics and Computation 208 (2009) 58–68

hold if and only if

X þ PT2 ½hL X þ ðhU  hL ÞZP2 < 0

ð39Þ

X þ PT2 ½hU X þ ðhU  hL ÞYP2 < 0:

ð40Þ

and

Using Fact 1, the inequalities (39) and (40) are equivalent to the LMIs (9) and (10), respectively. Therefore, if the LMIs (9)– (12) are satisfied, then the system (6) is guaranteed to be asymptotically stable and the corresponding controller gain is obh tained as K ¼ VP 1 2 . This completes our proof. Remark 1. The solutions of Theorem 1 can be obtained by solving the eigenvalue problem with respect to solution variables, which is a convex optimization problem [21]. In this paper, we utilize Matlab’s LMI Control Toolbox [23] which implements the interior-point algorithm. This algorithm is faster than classical convex optimization algorithms [21]. Remark 2. By iteratively solving the LMI given in Theorem 1 with respect to hU for fixed a; hL and hD , one can find the maximum upper bound of time delay hU for guaranteeing asymptotic stability of system (6). For the case uðtÞ ¼ 0, we can obtain the delay-dependent stability criteria for the system (6) with uðtÞ ¼ 0. For simplicity, we define the following notations before introducing stability criteria

R ¼ Rði;jÞ ði; j ¼ 1; . . . ; 9Þ; Rð1;1Þ ¼ PT2 A þ AT P2 þ R1 þ R2 þ R3 þ h2U M11  M22 þ ðhU  hL Þ2 N 11 þ PT6 þ P6 þ S2 þ ST2 Rð1;2Þ ¼ P8 þ S4 ; Rð1;3Þ ¼ PT2 Ad þ AT P3 þ M22  P6 þ PT7  P 8 þ P10  S2 ; Rð1;4Þ ¼ P10  S4 ; Rð1;5Þ ¼ P1  PT2 þ AT P4 þ h2U M12 þ ðhU  hL Þ2 N12 þ S1 ; Rð1;6Þ ¼ MT12 þ S3 ;

Rð1;7Þ ¼ S5 ;

Rð2;2Þ ¼ R1  N22 ;

Rð2;3Þ ¼ N22 þ PT9 ;

Rð2;7Þ ¼ NT12 þ S6 ;

Rð2;8Þ ¼ S6 ;

Rð3;3Þ ¼

PT3 Ad

þ

ATd P3

Rð2;5Þ ¼ 0;

Rð3;6Þ ¼ MT12  S3 ; Rð3;9Þ ¼ PT3 D þ ATd P5 ;

Rð3;8Þ ¼ MT12  N T12  S5 ;

Rð4;6Þ ¼ ST5 ;

Rð4;5Þ ¼ 0;

Rð4;7Þ ¼ S6 ;

Rð4;8Þ ¼

M T12

þ

Rð5;5Þ ¼

PT4

 P4 þ hU Q 1 þ ðhU  hL ÞQ 2 þ hU M 22 þ ðhU  hL Þ2 N22 ;

Rð5;6Þ ¼ S2 ;

 S6 ;

Rð4;9Þ ¼ 0;

ð41Þ 2

Rð5;7Þ ¼ S4 ;

Rð5;9Þ ¼ PT4 D  P5 ;

Rð5;8Þ ¼ S4 ;

Rð6;7Þ ¼ 0;

Rð6;6Þ ¼ M11 ;

Rð6;8Þ ¼ 0;

Rð6;9Þ ¼ 0;

Rð7;8Þ ¼ 0; Rð7;9Þ ¼ 0; Rð8;8Þ ¼ M11  N 11 ; W ¼ ½ E1 0 E2 0 0 0 0 0 0 ; h

N1 ¼ U 1

N2 ¼ diagfG1 ; G2 ; G3 ; G4 g; M ¼

X¼ " Pc ¼

Rð7;7Þ ¼ N11 ;

Rð8;9Þ ¼ 0;

Rð9;9Þ ¼ PT5 D þ DT P5  H;

pffiffiffiffiffiffi  pffiffiffiffiffiffi  pffiffiffiffiffiffi  pffiffiffiffiffiffi  i h D S2 h D S3 hD ST5 hD ST5 ; U2 U3 U4 "

"

Rð2;6Þ ¼ ST5 ;

Rð2;9Þ ¼ 0;

Rð3;5Þ ¼ PT3 þ ATd P4 ;

Rð4;4Þ ¼ R3  M22  N22 ; N T12

Rð2;4Þ ¼ 0;

 ð1  hD ÞR2  2M22  2N22  P7  P T7  P9  PT9 þ P 11 þ P T11 þ hD ðG1 þ G2 þ G3 þ G4 Þ;

Rð3;4Þ ¼ M22 þ N 22  P11 ; Rð3;7Þ ¼ NT12  S5 ;

Rð1;9Þ ¼ PT2 D þ AT P5 ;

Rð1;8Þ ¼ S5 ;

#

"

X1

X2

H

X2

P1

0

0

0

P2

P3

P4

P5



;

# ;

Y1

Y2

H

Y2 ETc ¼

M 11

M 12

H

M 22

#

" Z¼

; "

I

#

Z1

Z2

H

Z2

0 0 0

0 0 0 0

#

" N¼

; #

N 11

N 12

H

N 22

2

# ;

3

S1 6 S¼4H

S2

S4

S3

7 S5 5 ;

H

H

S6

;

:

Corollary 1. For given positive scalars hL ; hU , and any scalar hD , system (6) with uðtÞ ¼ 0 is robustly stable if there exist positive definite matrices P1 ; H; Ri ði ¼ 1; 2; 3Þ; Q i ði ¼ 1; 2Þ; Gi ði ¼ 1; . . . ; 4Þ; Si ði ¼ 1; 3; 6Þ; M ii ði ¼ 1; 2Þ; N ii ði ¼ 1; 2Þ; X i ði ¼ 1; 3Þ; Y i ði ¼ 1; 3Þ; Z i ði ¼ 1; 3Þ, and any matrices V; P i ; ði ¼ 2; . . . ; 11Þ; M 12 ; N 12 ; S2 ; S4 ; S5 ; X 2 ; Y 2 ; Z 2 , satisfying the following LMIs:

66

O.M. Kwon, J.H. Park / Applied Mathematics and Computation 208 (2009) 58–68

2

R WT1 H NT1

6 6H 4

7 T 0 7 5 þ P1 ðhL X þ ðhU  hL ÞZÞP1 < 0;

H

H 2

N

H T 1H

R W

6 6H 4 H

6X 6 4

P6

3

#3

T 2

6Y 6 4

Q1

M > 0;

"

2

7 P7 7 5 > 0;

H

ð42Þ

7 T 0 7 5 þ P1 ðhU X þ ðhU  hL ÞYÞP1 < 0;

N

H "

T 2

NT1

H

2

3

H N > 0;

P8

#3

"

2

7 P9 7 5 > 0; Q2

6Z 6 4 H

ð43Þ

P 10

# 3

P11

7 7 > 0; 5

ð44Þ

Q1 þ Q2

S > 0:

ð45Þ

Proof. Let us consider the following Lyapunov–Krasovskii’s functional candidate



6 X

V i;

ð46Þ

V 1 ¼ fT2 ðtÞEc Pc f2 ðtÞ

ð47Þ

i¼1

where

and the same ones V i ði ¼ 2; . . . ; 6Þ in (14). Here, Pc and Ec are defined in (41). With the above Lyapunov–Krasovskii’s functional candidate, the proof of Corollary 1 can be carried out by using methods in the proof of Theorem 1. Hence, it is omitted. h Remark 3. In many industrial systems, hD is unknown. For this case, Corollary 1 can be extended if we do not consider V 6 Rt and the term thðtÞ xT ðsÞR1 xðsÞ ds of V 2 . 4. Numerical examples Example 1. Consider the uncertain dynamic systems with time-varying delays:

_ xðtÞ ¼ A þ DAðtÞxðtÞ þ ðAd þ DAd Þxðt  hðtÞÞ þ BuðtÞ;

ð48Þ

where





0 0 0 1

 ;

Ad ¼



2 0:5 0

1

 ;



  0 1

and

D ¼ I;

E1 ¼ E2 ¼ 0:2I:

ð49Þ

When hL ¼ 0, by applying Theorem 1 to the above system, the delay bounds for the conditions hD ¼ 0 and hD ¼ 0:5 are listed in Table 1. Furthermore, when hL ¼ 0:3 and hD ¼ 0, the results are listed in Table 2. From Tables 1 and 2, one can see that Theorem 1 provides significantly improved results. For example, the obtained stabilizing controller with hU ¼ 1:0 by applying Theorem 1 is uðtÞ ¼ ½30:0591  13:4944xðtÞ.

Table 1 Delay bounds with hL ¼ 0(Example 1, a ¼ 4). Methods

hD

hU

Moon et al. [9] Fridman et al. [10] Parlaklßi [15] Li et al. [6] Theorem 1

0

0.4500 0.5865 0.6900 0.84 1.4598

Fridman et al. [10] Parlaklßi [15] Theorem 1

0.5

0.4960 0.6000 1.4597

67

O.M. Kwon, J.H. Park / Applied Mathematics and Computation 208 (2009) 58–68 Table 2 Delay bounds with hL ¼ 0:3 and hD ¼ 0(Example 1, a ¼ 4). Methods

hU

Li et al. [6] Theorem 1

0.9 1.4598

Table 3 MATIs with different methods (Example 2). Methods

MATI

Park et al. [24] Kim et al. [25] Yue et al. [26] Corollary 1

0.0538 0.7805 0.8695 1.0432

Table 4 Delay bounds with different values of hL and hD (Example 3). hL ¼ 0

Li et al. [6] Corollary 1

hL ¼ 0:3

hD ¼ 0:5

hD ¼ 0:9

hD ¼ 0:5

hD ¼ 0:9

0.31 0.56

0.31 0.50

0.55 0.65

0.55 0.62

Example 2. Consider the following Networked Control System

_ xðtÞ ¼



0

1

0 0:1



xðtÞ þ



0 0:1

 uðtÞ:

ð50Þ

System (50) is assumed to be controlled by a state-feedback controller uðtÞ ¼ ½ 3:75 11:5 xðtÞ. By applying Corollary 1 and Remark 3 to the above system with unknown hD , we obtained maximum allowable transfer interval (MATI) as 1.0432. In Table 3, MATIs which guarantees the asymptotic stability of system (50) are listed. From Table 3, we can see our proposed method gives a larger MATI than the ones in other literature. Example 3. Consider the following uncertain systems with constant delays:

_ xðtÞ ¼ ðA þ DFðtÞE1 ÞxðtÞ þ ðAd þ DFðtÞE2 Þxðt  hðtÞÞ     0:5 1 0:5 2 ; A¼ ; Ad ¼ 0 0:6 1 1 D ¼ I; E1 ¼ E2 ¼ 0:2I:

ð51Þ

In Table 4, the results for different condition of hD are compared with the results in Li [6]. From Table 4, it can be shown that our result for this example gives larger delay bounds than the ones in Li [6].

5. Conclusions In this paper, a new delay-range-dependent stabilization criterion for uncertain dynamic systems with interval timevarying delays is proposed. To obtain less conservative results, new augmented Lyapounv–Krasovskii’s functional and free weighting matrices are utilized by combining with the LMI framework for obtaining the stabilization of the system. The effectiveness of the proposed stabilization criterion is successfully verified by three numerical examples. References [1] [2] [3] [4]

J. Hale, S.M.V. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993. S.I. Niculescu, Delay effects on stability: a robust approach, Lecture Notes in Control and Information Sciences, vol. 2, Springer-Verlag, New York, 2002. J.P. Richard, Time-delay systems: an overview of some recent advances and open problems, Automatica 39 (2003) 1667–1694. Ju H. Park, O.M. Kwon, On new stability criterion for delay-differential systems of neutral type, Applied Mathematics and Computations 162 (2005) 627–637. [5] S. Xu, J. Lam, Y. Zou, Further results on delay-dependent robust stability conditions of uncertain neutral systems, International Journal of Robust and Nonlinear Control 15 (2005) 233–246. [6] T. Li, L. Guo, Y. Zhang, Delay-range-dependent robust stability and stabilization for uncertain systems with time-varying delay, International Journal of Robust and Nonlinear Control doi:10.1002/rnc.1280, 2007.

68

O.M. Kwon, J.H. Park / Applied Mathematics and Computation 208 (2009) 58–68

[7] P.G. Park, J.W. Ko, Stability and robust stability for systems with a time-varying delay, Automatica 43 (2007) 738–743. [8] P.G. Park, A delay-dependent stability criterion for systems with uncertain linear state-delayed systems0, IEEE Transactions on Automatic Control 35 (1999) 876–877. [9] Y.S. Moon, P.G. Park, W.H. Kwon, Y.S. Lee, Delay-dependent robust stabilization of uncertain state-delayed systems, International Journal of Control 74 (2001) 1447–1455. [10] E. Fridman, U. Shaked, An improved stabilization method for linear time-delay systems, IEEE Transactions on Automatic Control 47 (2002) 1931–1937. [11] E. Fridman, U. Shaked, Delay dependent stability and H1 control: constant and time-varying delays, International Journal of Control 76 (2003) 48–60. [12] D. Yue, S. Won, O. Kwon, Delay dependent stability of neutral systems with time delay: an LMI Approach, IEE Proceedings – Control Theory and Applications 150 (2003) 23–27. [13] O.M. Kwon, J.H. Park, On improved delay-dependent robust control for uncertain time-delay systems, IEEE Transactions on Automatic Control 49 (2004) 1991–1995. [14] S. Xu, J. Lam, Improved delay-dependent stability criteria for time-delay systems, IEEE Transactions on Automatic Control 50 (2005) 384–387. [15] M.N.A. Parlaklßi, Improved robust stability criteria and design of robust stabilizing controller for uncertain linear time-delay systems, International Journal of Robust and Nonlinear Control 16 (2006) 599–636. [16] M.N.A. Parlaklßi, Robust stability of uncertain time-varying state-delayed systems, IEE Proceedings – Control Theory and Applications 153 (2006) 469– 477. [17] O.M. Kwon, Ju H. Park, S.M. Lee, On stability criteria for uncertain delay-differential systems of neutral type with time-varying delays, Applied Mathematics and Computation 197 (2008) 864–873. [18] C.R. Knospe, M. Roozbehani, Stability of linear systems with interval time delay excluding zero, IEEE Transactions on Automatic Control 51 (2006) 1271–1288. [19] K.W. Yu, C.H. Lien, Stability criteria for uncertain neutral systems with interval time-varying delay, Chaos Solitons & Fractals 36 (2008) 920–927. [20] D. Yue, C. Peng, G.Y. Tang, Guaranteed cost control of linear systems over networks with state and input quantisation, IEE Proceedings – Control Theory and Applications 153 (2006) 658–664. [21] S. Boyd, L. Ghaoui, E. Feron, V. Balakrishanan, Linear matrix inequalities in system and control theory, Studies in Applied Mathematics, vol. 15, SIAM, Philadelphia, Pennsylvania, 1994. [22] K. Gu, An integral inequality in the stability problem of time-delay systems, in: Proceedings of 39th IEEE Conference on Decision Control, Sydney, Australia, 2000, pp. 2805–2810. [23] P. Gahinet, A. Nemirovski, A.J. Laub, M. Chilali, LMI Control Toolbox, The Mathworks, Natik, Massachusetts, 1995. [24] H.S. Park, Y.H. Kim, D.S. Kim, W.H. Kwon, A scheduling method for networked based control systems, IEEE Transactions on Control Systems Technology 10 (2002) 318–330. [25] D.S. Kim, Y.S. Lee, W.H. Kwon, H.S. Park, Maximum allowable delay bounds of networked control systems, Control Engineering Practice 11 (2003) 1301–1313. [26] D. Yue, Q.L. Han, C. Peng, State feedback controller design of networked control systems, IEEE Transactions on Circuits and Systems-II: Express Briefs 51 (2004) 640–644.