Product-to-Sum Identities 1 sin 𝐴 cos 𝐵 = [sin(𝐴 + 𝐵) + sin(𝐴 − 𝐵)] 2 sin 𝐴 sin 𝐵 =
1 [cos(𝐴 − 𝐵) − cos(𝐴 + 𝐵)] 2
1 cos 𝐴 sin 𝐵 = [sin(𝐴 + 𝐵) − sin(𝐴 − 𝐵)] 2 cos 𝐴 cos 𝐵 =
1 [cos(𝐴 − 𝐵) + cos(𝐴 + 𝐵)] 2
Sum-to-Product Identities
Sum and Difference Identities sin(𝐴 + 𝐵) = sin 𝐴 cos 𝐵 + cos 𝐴 sin 𝐵 sin(𝐴 − 𝐵) = sin 𝐴 cos 𝐵 − cos 𝐴 sin 𝐵 cos(𝐴 + 𝐵) = cos 𝐴 cos 𝐵 − sin 𝐴 sin 𝐵 cos(𝐴 − 𝐵) = cos 𝐴 cos 𝐵 + sin 𝐴 sin 𝐵 tan 𝐴 + tan 𝐵 1 − tan 𝐴 tan 𝐵
1 − cos 2𝜃 1 + cos 2𝜃
1 − cos 2𝜃 1 − cos 2𝜃 sin 2𝜃 = = 1 + cos 2𝜃 sin 2𝜃 1 + cos 2𝜃
Cofunction Identities
tan(𝐴 + 𝐵) =
2 tan 𝜃 1 − tan2 𝜃
tan(𝐴 − 𝐵) =
tan 𝐴 − tan 𝐵 1 + tan 𝐴 tan 𝐵
𝐴+𝐵 𝐴−𝐵 sin 𝐴 + sin 𝐵 = 2 sin ( ) cos ( ) 2 2 𝐴−𝐵 𝐴+𝐵 sin 𝐴 − sin 𝐵 = 2 sin ( ) cos ( ) 2 2 𝐴+𝐵 𝐴−𝐵 cos 𝐴 + cos 𝐵 = 2 cos ( ) cos ( ) 2 2 𝐴+𝐵 𝐴−𝐵 cos 𝐴 − cos 𝐵 = −2 sin ( ) sin ( ) 2 2
TRIGONOMETRIC IDENTITIES: USEFUL FORMULAS
THE UNIT CIRCLE 𝑥2 + 𝑦2 = 1 (𝑥, 𝑦) = (cos 𝜃 , sin 𝜃)