Undergraduate Category: Engineering and Technology Degree Level ...

Report 2 Downloads 159 Views
Undergraduate   Category:  Engineering  and  Technology   Degree  Level:  MechE,  sophomore   Abstract  ID#769

 

Integra(ng  S(ff  Electronic  Components  with  Flexible  Polymer  Substrates    

 

Robin  Hanqiu  Li  and  Randall  M.  Erb    

Sintering  ceramics  

Abstract    

In   order   to   increase   the   durability   of   cell   phones,   companies   are   seeking   to   introduce   flexible   characterisLcs   to   cell   phone   casings.   As   it’s   an   essenLal   part   of   a   cellphone   casing,   the   antenna   also   needs   to   be   flexible   to   withstand   certain   level   of   bending.   4   methods   to   construct   a   flexible   antenna   were  proposed  by  Directed  Assembly  of  ParLcles  and   Suspensions   (DAPS)   Lab   which   were   1)   producing   a   mixture   of   ceramics   and   polymers,   2)   infiltraLng   polymers   in   the   antenna   structure,   3)   refilling   sintered   ceramics   with   polymer,   and   4)   building   a   layered  structure  for  an  antenna.    

 

•  •  •  •  •  •   

Backfilled  method  

Second  stage  of  the  research   Take  samples  from  Stage  1   Sintered  following  sintering  protocol     3-­‐point  bend  test   Flexural  strength  for  sintered  ceramics  is  3.25MPa   Flexural  strength  for  unsintered  ceramics-­‐polymer  is  45.7MPa  

•  •  •  •  •  • 

 

Integrated  design  

 

SLll  a  work  in  progress   Based  on  previous  research     Take  all  the  samples  from  previous  stages     Form  a  layered  design  in  order  of  gradual   change  in  sLffness   •  3-­‐point  bend  test   •  Expected  to  have  rather  high  flexural  strength   •  Might  be  the  soluLon     •  •  •  • 

 

Background    

With   the   development   of   technology,   commercial   mobile   phones   have   undergone   several   tremendous   changes   such   as   decreasing   in   size   while   increasing   mobile  processing  capabiliLes.  At  this  point,  the  next   challenge   will   be   adding   flexibility   to   the   casing   in   order   to   increase   the   durability   of   the   phone.   However   this   feature   cannot   be   accomplished   without  making  the  most  fundamental  component— the  antenna—flexible.    

Third  Stage  of  the  research   SLll  a  work  in  progress   Take  sintered  samples  from  Stage  2     Refilled  with  polymer   3-­‐point  bend  test   Expected  to  have  rather  high  flexural  strength  

                                       Pre-­‐sintered  samples                                                                    Sintering  oven  

 

 

Ceramics-­‐polymer  Mixture   •  •  •  •  • 

First  stage     20wt%PVA  &  iron  fillings   Degas  mixture  then  dry  evaporate  water  content   at  60  degree  Celsius   Average  tensile  strength   Average  Modulus  is  1.527  Gpa  

Stretchable  heterogeneous  composite  research[1]  

                                           Flexural  Test                                                                                        Flexural  Test  finish   Flexural  Stress  Vs.  Extension   3.5  

3  

2.5  

 

Stress  (MPa)  

Degas  chamber   2  

       

1.5  

1  

0.5  

Stretchable  heterogeneous  composite  research[2]  

0   0  

0.05  

0.1  

0.15  

0.2  

0.25  

Extension  (mm)  

       

 

Summary  &  Future  Work  

Flexural  Stress  VS.  Strain    

•  Ceramics-­‐polymer  mixture  has  potenLal  to  be   the  most  flexible  design  among  all     •  ConLnue  to  determine  permi^vity  and  other   electrical  properLes  of  the  design   •  ConLnue  to  determine  flexural  strengths  and   modulus  of  the  last  two  methods  

Stress  VS.  Extension   60  

Tensile  TesLng  Samples    

50  

Stress  VS.  Strain  

40  

30   Stress  (MPa)  

Stress  (MPa)  

25   20  

30  

20  

15   10  

10   5  

0   0  

0   0.000%   0.500%   1.000%   1.500%   2.000%   2.500%   3.000%   3.500%   4.000%   4.500%   Strain    

    Sample  3   Sample  4   Sample  1   Sample  2     Tensile  Stress  VS.  Strain  graph  

     

-­‐10  

0.2  

0.4  

0.6  

0.8  

1  

1.2  

1.4  

1.6  

 

Extension  (mm)   Unsintered   Sintered  

Compared  Flexural  Stress  VS.  Strain  

 

Future  concept     [1]  [2]  Libanori,  Rafael,  Randall  M.  Erb,  Alain  Reiser,  Hortense  Le  Ferrand,  MarLn  J.  Süess,                            Ralph  Spolenak,  and  André  R.  Studart.  "Stretchable  Heterogeneous  Composites                            with  Extreme  Mechanical  Gradients."  Nature  CommunicaLons  3  (2012):  1265.  Web.