Valley and spin physics in 2D transition metal dichalcogenides

Report 38 Downloads 143 Views
Valley and spin physics in 2D transition metal dichalcogenides

Wang Yao The University of Hong Kong

Acknowledgement  Collaborators

Group @ HKU

Hongyi Yu Guibin Liu

Pu Gong

Zhirui Gong Prof. Xiaodong Xu (U of Washington)

Prof. Xiaodong Cui (HKU)

Funding Prof. Di Xiao (Carnegie Mellon U)

Outline  Valley physics from inversion symmetry breaking  Spin‐valley coupling in monolayer TMDCs  Interplay of spin, valley & layer in bilayer TMDCs  Exciton Dirac spectra in monolayer TMDCs

Valley index of Bloch electron  Valley index of Bloch electron Degenerate energy extrema of Bloch bands in momentum space In atomically thin 2D crystals: graphene, BN, MoS2 etc.

 Long lifetime of valley polarization expected Intervalley scattering suppressed by large k-space separation

Valley polarization

Valley index of Bloch electron  Valleytronics Valley for encoding information

Beenakker et al., Nat Phys. 07” Shayegan et al., PRL 06”

How to distinguish the valleys? Control of the valley dynamics?

 Lesson from spintronics Measurable quantities associated with valley index?

= 0

= 1

Valley vs spin for information processing Index of Bloch  electron

Associated physical phenomena

Magnetic moment Hall effect Optical selection rule

Spin

  

Valley

  

Xiao, WY & Niu, PRL 07”

WY, Xiao & Niu, PRB 08”

 Valley physics from inversion symmetry breaking  Valley can be manipulated in ways similar to spin  Key quantities: Berry curvature & orbital magnetic moment Hall effect

Valley contrasting properties by ISB Time-reversal symmetry

  k      k 

m  k   m  k 

Space-inversion symmetry

  k     k 

m  k   m  k 

Both symmetries

 k  0

m k  0

 Valley contrasting properties –

Opposite  &



Necessary condition: inversion symmetry breaking (ISB)

m for a time reversal pair of valleys

 Example: graphene with staggered sublattice potential  2



 2

Massive Dirac fermion:

∆ σ ˆz − 1 Hˆ = at( kx σˆx + ky σˆy ) + σˆz − λ sˆz 2 2

Valley contrasting Berry curvature Berry curvature

 z  1 (1) at valley K (-K)

Valley Hall effect

Gapped energy dispersion

gapped Dirac cones Xiao, WY & Niu, PRL 99, 236809 (2007)

Valley optical selection rule Magnetic moment

 z  1 (1) at valley K (-K)

magnetic moment of  valley pseudospin

Gapped energy dispersion

Valley selection rule of  interband transition K

‐K





gapped Dirac cones WY, Xiao & Niu, PRB 77, 235406 (2008)

2D transition metal dichalcogenides Top  view

MX2

x z

Layered structure suitable for extracting  monolayer by mechanical exfoliation

Bulk or even‐layers

z x

Monolayer

Indirect bandgap

Direct bandgap

with inversion  symmetry

without inversion   symmetry

Even‐odd oscillation of SHG Zeng, et al. Sci Rep 13”

Splendiani et al., NL 10” Mak et al., PRL 10”

Monolayer group VIB TMDCs

Massive Dirac fermions at the band edge Hamiltonian: Hˆ

= at( kx σ ˆx + k y σ ˆy ) +

1 2

∆ σ ˆz − 1 sˆz SOC) σ ˆz − λ (neglecting 2 2

Basis: |φ⌧ v i = p (|d x 2 − y 2 i + i |dx y i )

a

|φc i = |dz 2 i

 

Valley index:   1 1 at K (-K) valley

M oS 2 W S2 M oSe2 W Se2

3.193 3.197 3.313 3.310

∆ 1.66 1.79 1.47 1.60

Valley Hall effect Berry curvature:

t 1.10 1.37 0.94 1.19

2λ 0.15 0.43 0.18 0.46

eV

3t 2 k   2( 2  3k 2 a 2 t 2 )3/2

K

‐K

Valley optical selection rule 

Degree of circular polarization:

 k  

4 cos 2  2 cos2 

cos 

c  v 

Xiao, Liu, Feng, Xu & WY, PRL 108, 196802 (2012)



Optical generation of valley polarization Optical pump of valley polarization

Valley optical selection rule K

Pump with ‐ light => e‐h pairs in valley K

Optical detection of valley polarization Valley polarization of e (h) => Faraday rotation



‐K



Valley polarization of e‐h pair => polarized photoluminescence Absence of Hanle effect: magnetic field do not couple K & –K

Polarized PL under circular polarized excitation in monolayer MoS2 Cui group @HKU: Zeng, Dai, WY, Xiao & Cui, Nature Nano. 12” Parallel works: Heinz group @Columbia (Nat. Nano. 12”); PKU‐CAS group (Nat. Comm. 12”) 

Electrically tunable polarized PL in biased bilayer MoS2 Controllable inversion symmetry breaking by perpendicular electric field Xu group @ UW: Wu, Ross, Liu et al., Nature Physics 13”

Strong Coulomb binding: valley excitons with optical selection rules

Valley polarization of excitons & trions monolayer WSe2 60 40

Black: σ+ Red: σ-

20

Prof. Xiaodong Xu 360 +10V

+10V X-

240

Xo

Gate (V)

Detection

X -’ e e h X-

0

-5V

450 -5V 300

-20

Xo

-60 1.60

e hh

‐K

-60V

-60V

1.65

X+ 1.70

1.75

Photon Energy (eV)

150 150

h e

-40

120

0

Xo

K

‐K

K

X+

σ-

75 0 1.60 1.65 1.70 1.75 Energy (eV)

1.60 1.65 1.70 1.75 Energy (eV)

σ+ Incident

σ- Incident

σ+

Jones, Yu et al., Nature Nano. 13”

Optical generation of valley coherence Valley optical  selection rule

=

+

 Linear polarized light excite two valleys in linear superposition  Possibility to address valley coherence in macro systems  Linear polarized PL: polarization angle coincide with excitation Optical injected valley coherence can survive carrier relaxations (Jones, Yu et al., Nature Nanotech 13”)

Excitonic valley coherence in ML WSe2 Valley polarization σ+

K

‐K

K

‐K

Detection Black: σ + Red: σ -

Incident

H Incident

X-

Xo

120 450 -5V 300

Xo

X-

Valley coherence of X‐ broken  by exchange w extra electron

Xo

-5V

Only X0 has linearly  polarized PL

Xo

150

150

-60V X+

75

180 C 0.4 120

0

0

0.2

60

0

P o larizatio n

0

P L a n g le (d eg ree)

PL Intensity (counts/second)

Detection Black: H Red: V

+10V

360 +10V 240

Valley coherence

X+

0.0 60 120 180 In cid e n t an g le (d e g re e)

1.60 1.65 1.70 1.75 Energy (eV)

-60V

Jones, Yu et al., Nature Nano. 13”

1.60 1.65 1.70 1.75 Energy (eV)

Optical orientation of valley pseudospin Valley pseudospin of electron‐hole pair (exciton) |K> + ei2 |K>

|K>  (e‐h pair in valley K)

|-K> (e‐h pair in valley ‐K)

Outline  Valley physics from inversion symmetry breaking  Spin‐valley coupling in monolayer TMDCs  Interplay of spin, valley & layer in bilayer TMDCs  Exciton Dirac spectra in monolayer TMDCs

Spin-valley coupling in monolayer 2D crystal with mirror symmetry Out of plane  spin

In plane  spin

E(, k)  E(, k)

Spin orbit coupling has to be out‐of‐plane, i.e.   f (k)sz

Spin-valley coupling in monolayer 2D crystal with mirror symmetry  =>  SOC  f (k)sz Time reversal symmetry

f (k)   f (k)

Inversion symmetry

f (k)  f (k)

mirror sym    +    time reversal sym    +    broken inversion sym

z 1

H soc   z sz

 z  1

Spin-valley coupled massive Dirac fermions ra

Hamiltonian: Hˆ

= at( kx σ ˆx + k y σ ˆy )+

∆ σ ˆz − 1 ˆz − λ σ sˆz 2 2

1 2

Basis: |φ⌧ v i = p (|dx 2 − y 2 i + i |dx y i ) (m  2) |φc i = |dz 2 i

K

(m  0)

-K

On-site SOC: 1 L  S  Lz Sz  (L S  L S ) 2

• Spin‐valley coupling of hole (~ 0.15 eV in MoX2, ~ 0.4 eV in WX2)  • Spin and valley flip suppressed • Valley Hall accompanied by spin Hall • Spin‐valley coupling of electron (O(1) - O(10) meV)

Sign difference between MoX2 & WX2 WX2

MoX2

K

‐K

mainly from coupling to  remote m=±1 d band 









K

‐K

mainly from mix in of p orbitals 









Guibin Liu et al., PRB 88, 085433 (2013)

Spin dependent optical selection rule K

Valley optical selection rule

‐K



Valley & spin optical selection rule

WY, Xiao & Niu,  PRB 77, 235406 (2008)



K

‐K

B 

A 









Xiao, Liu, Feng, Xu & WY,  PRL 108, 196802 (2012)

Selective excitation of valley & spin controlled by light polarization & freq

Outline  Valley physics from inversion symmetry breaking  Spin‐valley coupling in monolayer TMDCs  Interplay of spin, valley & layer in bilayer TMDCs  Exciton Dirac spectra in monolayer TMDCs

AB stacked TMDC bilayer & multilayers z 1

AB stacking  z 1

K

 z  1 -K

 z  1

u H soc   z sz

l H soc   z sz

• Neighboring layers are 180o rotation of each other • 180o rotation switch the valleys but leave spin unchanged • Valley and layer dependent spin splitting: H soc   z z sz Gong et al., Nat. Comm. 4, 2053 (2013). 

Suppression of interlayer hopping AB stacking

K

-K

 







Top Layer

Bottom Layer 







• Interlayer hopping conserves spin and in‐plane momentum Hopping  at K:

Top L  

Hopping  amplitude ~ 0.1 eV

Bottom L Energy cost:

 

~ 0.15 eV for MoX2 ~ 0.4 eV for WX2

Suppression of interlayer hopping WS2 thin films

w/o SOC

w SOC

Zeng, Liu, et al. Scientific Reports 3, 168 (2013)

Suppression of interlayer hopping PL from WS2 : Prof. Xiaodong Cui

PL from WSe2 :

A B I

w SOC

Zeng, Liu, et al. Scientific Reports 3, 168 (2013)

Spin & valley dependent layer polarization Band edge carrier near K points: !

!

! ! ! ! ! !!

Gong et al., Nat. Comm.  4, 2053 (2013). 

!! ! !

Spin and valley dependent layer polarization: !!

! ! ! ! cos 2! , !!!!!cos 2! ≡

!

!

!

! !!

!

Conduction band at ±K:     hopping vanishes in leading order => even larger ratio of  over t,  Two‐sets of bands localized in opposite layers K

-K

~ 100%

~ 85% in MoX2 ~ 95% in WX2









Spin Hall & Spin circular dichroism K E

-K













Gong et al., Nat. Comm.  4, 2053 (2013). 

E 



Spin Hall in bilayer









Spin circular dichroism in bilayer

Bilayer optical  selection rule:

K 

sin 2

-K 





cos2 







ME effects from spin-layer locking • Oscillation of layer (electric) polarization in magnetic field • Electrically tunable spin Larmor precession Gong et al., Nat. Comm.  4, 2053 (2013). 

 sz  Valley ‐K

0.4

Ez 0 B0

1 0

Valley K

-1

0

40

80

tB0

-0.4 0

40

tB0

80

Valley dependent precession frequencies

K

Spin‐layer locking



-K 





ME effects from spin-layer locking K

-K

K

K

K

K

Spin doublet couples to both electric & magnetic fields, in different ways

K

Spin‐layer locking



-K 





Valley conditioned spin rotations Ez

Bz

K 

t

-K 



Bx

Faraday geometry Valley dependent spin splitting by E & B fields in z direction Valley dependent spin resonance by oscillating Bx -K

K K

K

 

K

Gong et al., Nat. Comm. 4, 2053 (2013). 

K



Electrically & magnetically driven ESR Bx

K

-K K  K

K  K

Ez

t

t

Bz

_

+ K  K

K  K

Voigt geometry Electrically driven ESR and magnetically driven ESR Valley dependent interference of electric & magnetic fields K

Spin‐layer locking



-K 





Evidence of spin-layer locking in bilayer PL PL from trion in BL WSe2 60V

σ+ σ-

E

Normalized PL

90V

Prof. Xiaodong Xu

Electrically induced Zeeman splitting 120V

Upper Layer

K

Lower Layer

c

150Vɷ 2

ɷ1

~ 100%

ɷ1 ɷ2

v

⇑ 1.6 1.65 1.71.75 Energy (eV)

ɷ1 ‐ ɷ2 =  c ‐  v

~ 95%

Jones, Yu, et al., Nat. Phy. 10, 130, 14”

Interlayer & intralayer trion Intralayer X  V

Bilayer WSe2 ɷ2

150V

Interlayer X 

ɷ1 V

Excitation: V

Monolayer WSe2 +10V X-

1.60

bottom layer has  lower energy for  excess electron

Black: V Red: H

Xo

1.65 1.70 1.75 Energy (eV)

1.6

1.65

1.7 Energy (eV)

1.75

Jones, Yu, et al.,  Nat. Phy. 10, 130, 14”

Intralayer X‐: valley coherence suppressed, similar to monolayer Interlayer X‐: valley coherence preserved, no exchange with excess electron

Outline  Valley physics from inversion symmetry breaking  Spin‐valley coupling in monolayer TMDCs  Interplay of spin, valley & layer in bilayer TMDCs  Exciton Dirac spectra in monolayer TMDCs

Tightly bound valley excitons in monolayer Ultra strong coulomb binding

Valley configurations

Large effective mass & reduced screening in 2D X0 binding

energy: 0.5 – 1 eV

Bohr radius: ~ 1 nm Trion binding 30 meV

strong e‐h  exchange

60

Gate (V)

40

=

σ+

-K

K

V(k)

X -’

-K

K

Valley‐orbit  coupling

20 X-

0

Xo

-20

K

=

-40 -60 1.60

1.65

X+ 1.70

1.75

Photon Energy (eV)

-K

Valley-orbit coupling of exciton Effective valley‐orbit coupling rotation symmetry

Coulomb in 2D

~a

2 B

chirality of 2

linear in k

probability for e-h to overlap

vanish at k = 0

strong coupling: VOC splitting >> radiative decay light cone

longitudinal branch Hongyi Yu et al. arXiv 1401.0667

transverse branch

~ 10-2K

ωu ~ 10-3K

ω0

~ 2 meV

ωd

Effect of tensile strain strain breaks rotational symmetry in-plane Zeeman field

I = 2 VOC 2 0 J cK

Linearly dispersed Dirac saddle point light cone

Yu et al. arXiv 1401.0667 2J0

light cone

one I = 2 cone

J0 J

0

-0.01

two I = 1 cones 2K

ky / K

0.01

-0.01

0

kx / K

0.01

Gapped Dirac cone of trion Negatively charged trions  K

-K exchange



 K

-K



 K

-K

K

-K

exchange

Indexed by polarization of emitting photon + spin of extra electron (s) valley pseudospin of recombining e-h pair ()



Exchange coupling with the extra electron



An effective out-of-plane Zeeman field conditioned on the extra spin

Gapped Dirac cone of trion Trion valley Hall 



-K

K

-K

K

-K

K





exchange

K

exchange



0

0

-2 -5 1

0.99



Energy (meV)

2

qX- / K

-0.99

-1

-1.01

Berry curvature (104Å2)

5

1.01

E

-K

Trion brightness 0

1

Summary  Valley dependent Hall current, magnetic moment, optical  selection rule from inversion symmetry breaking  A pair of time reversal symmetric valleys may play similar  roles like spin in electronic applications  Strong spin‐valley coupling in monolayer TDMCs: valley  control enables spin control  Coupling of layer pseudospin to valley & spin in bilayers:  magnetoelectric effects, valley conditioned spin control  e‐h exchange of the tightly bound excitons: strong valley‐ orbit coupling, strain tunable Dirac spectra