Vortex Liquid Crystals in Anisotropic Type II ... - Purdue Physics

Report 3 Downloads 56 Views
Vortex Liquid Crystals in Anisotropic Type II Superconductors

E. W. Carlson A. H. Castro Netro D. K. Campbell Boston University

cond-mat/0209175

Vortex

B

λ

r |Ψ|

ξ

r In the high temperature superconductors, κ ≡ λξ ≈ 100 λ: screening currents and magnetic field ξ: the normal “core”

Vortex Lattice Melting

Circular Cross Sections:

Lattice

Liquid

Raise T or B

Cross Section of a Vortex

ISOT ROP IC

CircularP rof ile

AN ISOT ROP IC

 

m

m=

m 2

 

mc λ2 = 4πe 2 ns → − → − λ2∇2 B − B = Φoδ2(r) → − Φo K (r/λ) B = 2πλ 2 o

 

m=

EllipticalP rof ile

m



mx my mz 2

  

mx c = λ2 (B||zb) x 4πe2 ns → − → − λ2∇2 B − B = Φoδ2(r) → − Φo K (r/λ) B = 2πλ 2 o

Anisotropic Vortex Lattice Melting Elliptical Cross Sections:

Anisotropic Interacting “Molecules” → Liquid Crystalline Phases Abrikosov Liquid Crystals?

Smectic-A Liquid-Like

Nematic

Solid-Like

Lattice

Raise T or B

Raise T or B

Symmetry of Phases CRYSTALS:

Break continuous rotational and translational symmetries of 3D space

LIQUIDS:

Break none

LIQUID CRYSTALS:

Break a subset

Hexatic:

6-fold rotational symmetry unbroken translational symmetry

Nematic:

2-fold rotational symmetry unbroken translational symmetry

Smectic:

breaks translational symmetry in 1 or 2 directions

Smectics

Smectic-A

Smectic-C Full translational symmetry in at least one direction Broken translational symmetry in at least one direction (Broken rotational symmetry)

Many Vortex Phases Abrikosov Lattice Entangled Flux Liquid Chain States Hexatic Smectic-C Driven Smectic

Abrikosov (1957) Nelson (1998) Ivlev, Kopnin (1990) Fisher (1980) Efetov (1979) Balents, Nelson (1995) Balents, Marchetti, Radzihovsky (1998)

Our Assumption:

¤ Explicitly broken rotational symmetry

Instability of Ordered Phase: Lindemann Criterion for Melting

u = (ux , uy ) 2 < u2 >=< u2 x > + < uy > ≥

Typically, lattice melts for c ≈ .1 Houghton, Pelcovits, Sudbo (1989) Extended to Anisotropy: uy ux

< u2 x > ≥

1 c2 a 2 x 2

< u2 y > ≥

1 c2 a 2 y 2

Look for one to be exceeded well before the other.

c 2 a2

Method 2 Calculate < u2 x > and < uy > ¤ based on elasticity theory of the ordered state ¤ using k-dependent elastic constants ¤ from Ginzburg-Landau theory

F =

1 (2π)3

R

¯·~ d~k~ u·C u

where ~ u = (ux , uy ) = vortex displacement

¯= C

Ã

c11 (~k)kx2 + ce66 ky2 + ce44 (~k)kz2 c11 (~k)kx ky

c11 (~k)kx ky c11 (~k)ky2 + ch66 kx2 + ch44 (~k)kz2 ... for B||ab

Elastic constants are known for uniaxial superconductors:



m ¯ = ANISOTROPY: γ 4 =

mab mc

mab mab mc

= ( λλabc )2 = ( ξξabc )2

 

!

Elastic Constants TILT MODULI h − q)= ce44 (→

− ch44 (→ q)=

B 2 1−b 4π 2bκ2 2

B 1−b 4π 2bκ2

1 m2λ +(qx2 +qy2 )+γ −2 qz2



i

+

B2 5 ln 4π 2bκ2

m2λ +(γ −4 qx2 +qy2 +γ −2 qz2 ) m2λ +(qx2 +γ 4 qy2 +γ 2 qz2 )

BULK MODULI

´³

¡ ¢ e κ + 1−b 2 ´i

1 m2λ +qx2 +qy2 +γ −2 qz2

2

→ − − − q ) = ce,o q ) = ch11 (→ ce11 (→ 44 ( q )

SHEAR MODULI c66 =

Φo B (8πλab )2

=

2

B 2 2 (1−b) γ 8bκ2 4π

ce66 = γ 6 c66 ch66 = γ −2 c66

where: m2λ =

e κ= b≡

Magnetic Field

1−b 2bκ2

q

1+γ −4 κ2 +2bκ2 γ −2 qz2 1+bκ2 +2bκ2 γ −2 qz2

B ab (T ) Bc2

=

B ab (T =0)(1−t) Bc2

Input parameters: b, γ, κ =

λab ξab

−4

¡

γ ln e κ+ +B 4π 2bκ2

1−b 2

¢

Elastic Constants Vanish at Bc2 B B (T=0) c2

"All Core"

Vortices

Meissner

Tc

Bcc2 = ab = Bc2

T

φo 2 (T ) 2πξab φo 2πξc (T )ξab (T )

ξ(T ) =

ξ(T ) √ 1−t

t = T /Tc



ab = Bc2

φo (1 2πξc (0)ξab (0)

− t)

Which way will it melt?

¤ Elastic constants scale on short length scales. ¤ Scaling breaks down at long length scales, c1 1, c4 4 →

Lindemann criterion < u2x >≥ 12 c2 a2x

B2 4π

Lindemann ellipse follows eccentricity of the lattice Fluctuations are less eccentric

< u2y >≥ 21 c2 a2y Anisotropy favors smectic-A

Short wavelengths: Elastic constants soften Long wavelengths: Low energy cost Both are important.

YBCO with B||ab We can compare to the uniaxial case experimentally. Add pinning: Ã 2

¯= C

c11 (~k)kx + ce66 ky2 + ce44 (~k)kz2 c11 (~k)kx ky

c11 (~k)kx ky c11 (~k)ky2 + ch66 kx2 + ch44 (~k)kz2 + ∆

Using Lawrence-Doniach model,

∆=

√ 2 8 πBc2 (b−b2 )ξc γ 2 −8ξc2 /s2 e s 3 β A κ2

where βA ≈ 1.16 Pinning vanishes exponentially as the Bc2 (T ) line is approached.

→ →

Pinning favors smectic-C

Anisotropy favors smectic-A

!

With Planar Pinning Integrate < u2x > and < u2y > numerically to obtain melting curves Compare to data on YBCO with B||ab

Parameters: Tc = 92.3K

mc mab

= 59

κ=

λab ξab

ab = 842T Hc2

= 55

Lindemann parameter c = .19 (only free parameter)

8

B(T) 6

4

2

0 88

89

90

91

92

93

T(K)

Data is from Kwok et al., PRL 69 3370(1992) Grigera et al. PRB (1998) find smectic-C in optimally doped YBCO with B||ab

But we are really interested in the case without pinning.

Now consider the effect of anisotropy alone...

In the absence of pinning: Parameters:

mc mab

= 10

κ=

λab ξab

= 100

Lindemann parameter: c = .2 0.1

B/Hc2(0)

0.08

0.06

0.04

0.02

0 0.2

0.4

0.6

T/Tc

0.8

1

Stronger anisotropy: mc mab

= 100

κ=

λab ξab

= 100

Lindemann parameter c = .2

0.1

B/Hc2(0)

0.08

0.06

0.04

0.02

0 0.2

0.4

0.6

T/Tc

0.8

1

Theoretical Phase Diagram

B H (T=0) c2

-A

tic

tic

ma

Ne

ec

Sm Lattice Meissner

Tc

T

Long Range Order? Smectic + spontaneously broken rotational symmetry Has at most quasi long-range order Smectic order parameter: ρ = |ρ|eiθ

F =

1 2

R

dr[α(∇|| θ)2 + β(∇2⊥ θ)2 ]

Smectic + explicitly broken rotational symmetry Our assumption: mab 6= mc Explicitly broken rotational symmetry Costs energy to rotate the vortex smectic.

F =

1 2

R

dr[α0 (∇x θ)2 + β 0 (∇y θ)2 + β 00 (∇z θ)2 ]

Just like a 3D crystal.

3D smectic + explicitly broken rotational symmetry → Long Range Order

Other methods point to smectic-A 2D boson mapping:

(Nelson, 1988)

L →τ →∞ 3D vortices

2D melting T > 0:

2D bosons T = 0 (Ostlund Halperin, 1981)

Short Burgers’ vector dislocations unbind first → Smectic-A Quasi-Long-Range Order

Our case: T = 0 Smectic can be long-range ordered.

C. Reichhardt and C. Olson Numerical simulations on 2D vortices with anisotropic interactions

a

b

c

d

C. Reichhardt and C. Olson Numerical simulations on 2D vortices with anisotropic interactions

a

b

c

d

Distinguishing the Smectics: Lorentz y

Lattice

x

ρ =0 x

z

ρ =0 y ρ =0 z

(FL=0) 3D Superconductivity

Smectic-A ρ =0 x ρ =0 y

(FL || liquid-like)

ρ =0 z

(FL=0)

ρ =0 x

( FL || liquid-like)

2D Superconductivity between smectic layers

Smectic-C

ρ =0 y ρ =0 z

(FL=0)

2D Superconductivity between smectic layers

Experimental Signatures Resistivity: ¤ Smectic may retain 2D superconductivity ¤ ρ = 0 along liquid-like smectic layers ¤ ρ 6= 0 along the density wave Structure Factor: (Neutron scattering or Bitter decoration) ¤ Liquid-like correlations in one direction ¤ Solid-like correlations in the other

µSR: ¤ Signature at both melting temperatures

Solid-Like Correlations

Where to look for the Smectic-A Liquid-Like Correlations

Our Assumptions: ¤ Explicitly broken rotational symmetry ¤ No explicitly broken translational symmetry

Cuprate Superconductors: → Stripe Nematic ¤ Yields anisotropic superfluid stiffness ¤ Does not break translational symmetry

B||c:

Look for vortex smectic-A in the presence of a stripe nematic

Conclusions ¤

Anisotropy favors intermediate melting (Lattice → Smectic-A → Nematic)

- Lindemann criterion - 2D boston mapping - 2D numerical simulations (Reichhardt and Olson)

¤

Smectic-A has Long Range Order - 3D smectic + explicit symmetry breaking - 2D boson mapping

¤

Experimental Signatures: -

Resistivity anisotropy µSR Bitter decoration Neutron scattering