Weighted Laplacian Differences Based Multispectral ... - IEEE-GRSS

Weighted Laplacian Differences Based Multispectral Anisotropic Diffusion V. B. Surya Prasath Department of Mathematics University of Coimbra, Portugal Department of Computer Science University of Missouri-Columbia, USA

Surya (UC)

Multispectral

Anisotropic Diffusion

1 / 26

Outline

1

Image Denoising Basic Problem

2

Proposed Scheme Multispectral Diffusion Channel Coupling

3

Experimental Results Denoising Examples Summary

Surya (UC)

Multispectral

Anisotropic Diffusion

2 / 26

Outline

1

Image Denoising Basic Problem

2

Proposed Scheme Multispectral Diffusion Channel Coupling

3

Experimental Results Denoising Examples Summary

Surya (UC)

Multispectral

Anisotropic Diffusion

2 / 26

Outline

1

Image Denoising Basic Problem

2

Proposed Scheme Multispectral Diffusion Channel Coupling

3

Experimental Results Denoising Examples Summary

Surya (UC)

Multispectral

Anisotropic Diffusion

2 / 26

Outline

1

Image Denoising Basic Problem

2

Proposed Scheme Multispectral Diffusion Channel Coupling

3

Experimental Results Denoising Examples Summary

Surya (UC)

Multispectral

Anisotropic Diffusion

3 / 26

Inverse problem

Imaging Model: u0 = u + n Inverse problem Ill-posed problem n - random noise

Surya (UC)

Multispectral

Anisotropic Diffusion

4 / 26

Definition of edges in digital images

|∇u| determines the edges Edge detectors are based on |∇u| Discontinuities of the image function Interchannel correlations (Color, Multispectral)

Surya (UC)

Multispectral

Anisotropic Diffusion

5 / 26

Definition of edges in digital images

|∇u| determines the edges Edge detectors are based on |∇u| Discontinuities of the image function Interchannel correlations (Color, Multispectral)

Surya (UC)

Multispectral

Anisotropic Diffusion

5 / 26

Definition of edges in digital images

|∇u| determines the edges Edge detectors are based on |∇u| Discontinuities of the image function Interchannel correlations (Color, Multispectral)

Surya (UC)

Multispectral

Anisotropic Diffusion

5 / 26

Definition of edges in digital images

|∇u| determines the edges Edge detectors are based on |∇u| Discontinuities of the image function Interchannel correlations (Color, Multispectral)

Surya (UC)

Multispectral

Anisotropic Diffusion

5 / 26

Perona-Malik’s idea Anisotropic diffusion equation ∂u = div (g(|∇u|)∇u) with u(x, 0) = u0 (x) ∂t Required properties: B g : [0, ∞) → (0, ∞) is decreasing, g(0) = 1 B lims→∞ g(s) = 0 with g(s) ≈

√1 s

Examples g1 (s) = exp (−s/K )2

Surya (UC)

g2 (s) = (1 + (s/K )2 )−1

Multispectral

Anisotropic Diffusion

6 / 26

Advantages & caveats

X Use |∇u| to drive the diffusion X Automatic edge detection & selective smoothing × Multichannel correlations × Multi-edges alignment

Surya (UC)

Multispectral

Anisotropic Diffusion

7 / 26

Outline

1

Image Denoising Basic Problem

2

Proposed Scheme Multispectral Diffusion Channel Coupling

3

Experimental Results Denoising Examples Summary

Surya (UC)

Multispectral

Anisotropic Diffusion

8 / 26

Multichannel images Let u0 = (u01 , · · · , u0N ) : Ω → RN be the noisy input N-D image.

Noisy u0

Denoised u

1

Denoise u0 to find u = (u 1 , · · · , u N )

2

Use information from u0i

3

Detect discontinuities from all u0i

Surya (UC)

Multispectral

Anisotropic Diffusion

9 / 26

Multispectral anisotropic diffusion I Use minimum, median, mean of ∇u:

(Acton & Landis, IJRS ’97)

∂u i = div (g(∇u 1 , ∇u 2 , . . . , ∇u N )∇u i ) ∂t  i Minimum g = g(mini ∇u  ) i Median g = g(median ∇u ) P Mean g = g( N1 ∇u i ) I Use vectorial diffusion: (Tschumperle´ & Deriche, PAMI ’05) ∂u = Trace(HD) ∂t

Surya (UC)

Multispectral

Anisotropic Diffusion

10 / 26

Outline

1

Image Denoising Basic Problem

2

Proposed Scheme Multispectral Diffusion Channel Coupling

3

Experimental Results Denoising Examples Summary

Surya (UC)

Multispectral

Anisotropic Diffusion

11 / 26

Proposed scheme

Multispectral Anisotropic Diffusion N       X ∂u i ωi ∆u j − ωj ∆u i = div g ∇u i ∇u i + α ∂t j=1

Flexibility: Diffusion function g Weights ω

Surya (UC)

Multispectral

Anisotropic Diffusion

12 / 26

Key idea Weighted Laplacian Differences Laplacian differences (multi-edges) Use weights (alignment) Keep the intra-channel diffusion Cross-correlation term (for channel i) N  X

j

ωi ∆u − ωj ∆u

i



j=1

(a) (u 1 , u 2 ) Surya (UC)

(b) (∆u 1 , ∆u 2 ) Multispectral

(c) Anisotropic Diffusion

13 / 26

TV based weights The total variation PDE (Rudin, Osher, Fatemi ’92) ! ˜i ˜i ∂u ∇u ˜ i (0) = u0i with u = div i ˜ ∂t ∇u Pre-smooth the gradients ˜i ωi = Gρ ? ∇u

Scheme details X Split Bregman implementation X Fast computation of convolution X Additive operator splitting

Surya (UC)

Multispectral

Anisotropic Diffusion

14 / 26

Outline

1

Image Denoising Basic Problem

2

Proposed Scheme Multispectral Diffusion Channel Coupling

3

Experimental Results Denoising Examples Summary

Surya (UC)

Multispectral

Anisotropic Diffusion

15 / 26

Color (RGB) image

(a) Input

(b) Weight

(c) Difference

(d) Our scheme

(e) Original

(f) Residue

Surya (UC)

Multispectral

Anisotropic Diffusion

16 / 26

Multispectral image (N = 8) - Mississippi River

(a) Input

Surya (UC)

(b) Denoised

Multispectral

Anisotropic Diffusion

17 / 26

Multispectral image (N = 8) - 3 denoised channels

(a) L-band VV

Surya (UC)

(b) L-band VH

Multispectral

(c) C-band VV

Anisotropic Diffusion

18 / 26

Comparison of different schemes

(a) Acton & Landis (b) Tschumperle´ Deriche

(c) Our scheme Surya (UC)

&

(d) Multi-edges

Multispectral

Anisotropic Diffusion

19 / 26

High noise - San Francisco Bay

(a) Input (N = 4) - (1,2,3)

Surya (UC)

Multispectral

(b) Denoised

Anisotropic Diffusion

20 / 26

Outline

1

Image Denoising Basic Problem

2

Proposed Scheme Multispectral Diffusion Channel Coupling

3

Experimental Results Denoising Examples Summary

Surya (UC)

Multispectral

Anisotropic Diffusion

21 / 26

Summary

Selective smoothing & enhancement Integrated edge information (multi-edges) Fast Split Bregman implementation Reliable & efficient Extension to Hyperspectral ?

Surya (UC)

Multispectral

Anisotropic Diffusion

22 / 26

References G. Aubert and P. Kornprobst. Mathematical problems in Image Processing. Springer-Verlag, 2006. P. Perona and J. Malik. Scale space and edge detection using anisotropic diffusion. IEEE Trans. on PAMI, 14(8):826–833, 1990. S. T. Acton and J. Landis. Multi-spectral anisotropic diffusion. Int’l J. Remote Sens., 18:2877-2886, 1997. D. Tschumperle´ and R. Deriche. Vector-valued image regularization with PDEs: A common framework for different applications. IEEE Trans. on PAMI, 27:1-12, 2005.

Surya (UC)

Multispectral

Anisotropic Diffusion

23 / 26

References G. Aubert and P. Kornprobst. Mathematical problems in Image Processing. Springer-Verlag, 2006. P. Perona and J. Malik. Scale space and edge detection using anisotropic diffusion. IEEE Trans. on PAMI, 14(8):826–833, 1990. S. T. Acton and J. Landis. Multi-spectral anisotropic diffusion. Int’l J. Remote Sens., 18:2877-2886, 1997. D. Tschumperle´ and R. Deriche. Vector-valued image regularization with PDEs: A common framework for different applications. IEEE Trans. on PAMI, 27:1-12, 2005.

Surya (UC)

Multispectral

Anisotropic Diffusion

23 / 26

Questions?

Thank you

Surya (UC)

Multispectral

Anisotropic Diffusion

24 / 26

Color (RGB) denoising

(a) Input

(b) Weight

(c) Difference

(d) Our scheme

(e) Original

(f) Residue

Surya (UC)

Multispectral

Anisotropic Diffusion

25 / 26

Comparison of different schemes - Paris

(a) Input (N = 7) - (b) Acton & Landis (4,3,2)

(d) Tschumperle´ Deriche Surya (UC)

&

(e) Original Multispectral

(c) Bresson & Chan

(f) Our scheme Anisotropic Diffusion

26 / 26