Wind Power Electricity: the bigger the turbine, the ... - BioMedSearch

Report 1 Downloads 37 Views
Wind Power Electricity: the bigger the turbine, the greener the electricity? MARLOES CADUFF,*,†,‡ MARK A. J. HUIJBREGTS, § HANS-JOERG ALTHAUS, †ANNETTE KOEHLER†, STEFANIE HELLWEG† †

ETH Zurich, Institute of Environmental Engineering, CH-8093 Zurich, Switzerland, ‡ Empa, Swiss Federal Laboratories for Materials Testing and Research, Technology and Society Laboratory, Ueberlandstrasse 129, CH-8600 Duebendorf, Switzerland, and § Department of

Environmental Science, Institute for Wetland and Water Research, Faculty of Science, Radboud University Nijmegen, P.O. Box 9010, NL-6500 GL Nijmegen, The Netherlands [email protected] Received date Corresponding author phone: +41 44 823 48 12; fax: +41 44 823 40 42; e-mail: [email protected].

S1

Supporting Information Modeling Table S1 Modeling assumptions for the use phase of the wind turbine

Source

Year of study

1

2008 2000 2009 2009 2009 2006 2007 2007 2007 2007 2000 2003

2 3 3 4 5 6 6 6 6 7 8

Rated power [kW] 660 500 850 3000 2000 1650 30 150 600 800 600 1500

Life span 20 20 20 20 20 20 20 20 20 20 25 20

Oil changing cycle [years] 2 2 1 1 1 1 4 4 2 1 2 1

Amount of oil/life cycle [kg] 840 638 1079 3788 2528 2087 84 168 714 1058 955 1898

Transport, pass. car, 1p 50km [tkm] 500 500 1000 1000 1000 1000 250 250 500 1000 550 1000

Table S2 Modeling assumptions for the end of life phase of the wind turbines Element

Disposal process

Cables Electronics Foundation

Disposal, plastics, mixture, 15.3% water, to municipal incineration/CH Disposal, plastics, mixture, 15.3% water, to municipal incineration/CH Disposal, plastics, mixture, 15.3% water, to municipal incineration/CH Disposal, concrete, 5% water, to inert material landfill/CH Disposal, steel, 0% water, to inert material landfill/CH Disposal, plastics, mixture, 15.3% water, to municipal incineration/CH Disposal, used mineral oil, 10% water, to hazardous waste incineration/CH Disposal, plastics, mixture, 15.3% water, to municipal incineration/CH Disposal, plastics, mixture, 15.3% water, to municipal incineration/CH Disposal, used mineral oil, 10% water, to hazardous waste incineration/CH Disposal, used mineral oil, 10% water, to hazardous waste incineration/CH

Nacelle Rotor Turbine Used oil

Aluminum, iron, steel (with the exception of reinforcing steel in the foundation) and copper were assumed to be recycled and modeled as cut-off processes. According to the cut-off approach, e.g. followed in the ecoinvent database v2 that was used for background data in this paper, environmental burdens of the recycling processes are allocated to processes using the secondary materials and are thus not included in the LCA of the wind turbines. 9 S2

Life Cycle Inventories Rotor. The rotors mainly consist of glass fiber reinforced plastic, steel and iron components.

Table S3 LCI of the rotors Source Rated power Glass fibre reinforced plastic, polyamide, injection moulding, at plant /RER Chromium steel 18/8, at plant /RER Sheet rolling, chromium steel /RER Cast iron, at plant/RER Section bar rolling, steel/RER Aluminium, production mix, at plant, RER Sheet rollling, aluminium/RER Epoxy resin, liquid, at plant/RER Chemicals organic, at plant /GLO Polyethylene, HDPE, granulate, at plant/RER Extrusion, plastic pipes/RER Nylon 66, at plant/RER PVC, at regional storage/RER Extrusion, plastic pipes/RER Foaming, expanding/RER Synthetic rubber, at plant/RER Transport, lorry >32t, EURO4/RER Transport, freight, rail/RER

kg kg kg kg kg kg kg kg kg kg kg kg kg kg kg kg tkm tkm

3

3

4

5

6

6

6

6

7

8

850 kW 3010

3000 kW 12040

2000 kW 19810

1650 kW 25200

30 kW 146

150 kW 2500

600 kW 5880

800 kW 8400

600 kW 5750

1500 kW 6564

4980 4980

19930 19930

138 138 79 79

662 662 379 379

3900 3900 4200 4200

3100 3100 3200 3200

2500 2500

14000 14000

5700 5700 11300 11300

250 250

1598 7990

6394 31970

6762 33810

8440 42200

72.6 363

708.2 3541

2796 13980

2940 14700

99 99 5100 1575 684 912 228 1230 393 837 165 3129 15645

1700 8500

Nacelle. The rotors mainly consist of glass fiber reinforced plastic, steel and iron components.

Table S4 LCI of the nacelle Source Rated power Aluminium, production mix, at plant, RER Sheet rollling, aluminium/RER Chromium steel 18/8, at plant /RER Sheet rolling, chromium steel /RER Copper, at regional storage/RER Wire drawing, copper/RER Polyethylene, HDPE, granulate, at plant/RER Extrusion, plastic pipes/RER Lubricating oil, at plant /RER Cast iron, at plant/RER Section bar rolling, steel/RER Glass fibre reinforced plastic, polyamide, injection Moulding, at plant /RER Epoxy resin, liquid, at plant/RER MG-Silicon, at plant /NO Steel, low-alloyed, at plant/RER Section bar rolling, steel/RER Sheet rolling, steel/RER Polyester resin, unsaturated, at plant/RER Synthetic rubber, at plant/RER Transport, lorry >32t, EURO4/RER Transport, freight, rail/RER

kg kg kg kg kg kg kg kg kg kg kg kg kg kg kg kg kg kg kg tkm tkm

3

3

4

5

6

6

6

6

7

8

850 kW 419 419 20194 20194 789 789 180 180 134

3000 kW 1621 1621 61000 61000 3051 3051 700 700 485

2000 kW

1650 kW 500 500 20800 20800 1600 1600 1000 1000 300 18000 18000 1800

30 kW 14.7 14.7 598.45 598 17 17

150 kW 70.6 70.6 2872 2872 81 81

600 kW 204 204 13880 13880 238 238

800 kW 207 207 11426 11426 242 242

1500 kW 127 127 24052 24052 9281 9281

10 189 189 60

57 907 907 288

50.4 3067 3067 1261

58.8 3279 3279 1261

600 kW 1600 1600 16350 16350 1000 1000 50 50 94

21690 21690 3500 3500

322 18500 18500 2000

750

240 21027 21027 924 654

350

4343 21716

13371 66857

9272 46362

6300 6300

49 49

235 235

2650 2650

3685 3685

10060 50300

3.2 188 941

15 905 4526

100 4290 21450

100 4052 20259

32065 12809 19256 2159 3969 19844

18106 90529

S3

Tower. Zinc coating was only included in (Burger and Bauer 2007). However it was assumed that all steel towers were zinc coated and the coating was added everywhere. Zinc coating was parameterized as a function of hub height (h). Welding arc was modeled as 3.8h. Zinc coating (ZC) pieces was modeled linear with hub height according to the 4 turbines from (Burger and Bauer 2007), hence ZC (m) = 25h 491, R2=0.96 was used.

Table S5 LCI of the towers Source Rated power

3

3

4

5

6

6

6

6

7

8

3000 kW 1240 158760 158760 3.8h 25h 491 20ZC

2000 kW 0 143000 143000 3.8h 25h 491 20ZC

1650 kW 0 126100 126100 3.8h 25h 491 20ZC

30 kW 37 5299 5299 3.8h 25h 491 20ZC

150 kW 95 15019 15019 3.8h 25h 491 20ZC

600 kW 144 38900 38900 3.8h 25h 491 20ZC

800 kW 360 69375 69375 3.8h 25h 491 20ZC

600 kW 250 37000 37000 3.8h 25h 491 20ZC

1500 kW 4217 148877 148877 3.8h 25h 491 20ZC

Epoxy resin, liquid, at plant Steel low-alloyed, at plant Sheet rolling, steel Welding arc, steel Zinc coating, pieces (ZC)

kg kg kg m m2

Zinc coating, pieces, adjustment per um Transport, lorry >32t, EURO4/RER Transport, freight, rail/RER

m2

850 kW 930 69070 69070 3.8h 25h 491 20ZC

tkm

14000

32000

28600

25220

1067

3023

7809

13947

7450

30619

tkm

70000

160000

143000

126100

5336

15114

39044

69735

37250

153094

Foundation. Land transformation and occupation was not included in many studies and was added. Transformation to traffic area was assumed independent of turbine size, with an area of 1000 m2. Occupation of the road was assumed with the life time of the turbine, 20a. The occupation and transformation of the tower base area, depends on base sizes. These were estimated by the 5 given foundation sizes: A (m2) = 4h – 89, R2=0.88. Transport lorry: 50 km for concrete, 100 km for plastics, steel and iron. Transport train: 200 km for plastics, steel and iron.

Table S6 LCI of the foundations 1

2

3

3

4

5

6

6

6

6

7

8

m3 kg

660 kW 155 3.8

500 kW 119

850 kW 202

3000 kW 479

2000 kW 294

1650 kW 338

30 kW 23

150 kW 23

600 kW 82

800 kW 102

600 kW 18

1500 kW 348

kg

45

kg kg kg m2

49 11100

12000

15000

36000

1110

1074

1147

m2

1000

1000

m2

110

m2a m2a

Source Rated power Concrete, normal, at plant Polyethylene, HDPE, granulate, at plant Polyvinylchloride, at regional storage Extrusion, plastic film Reinforcing steel, at plant Cast iron, at plant Transformation, from pasture and meadow Transformation, to traffic area, road network Transformation, to industrial area, built up Occupation, traffic area, road network Occupation, industrial area,

166

27000

2367

2367

11200

14000

4735

166 24000

1226

15000 25000 1175

1226

1004

1004

1091

1121

1049

1175

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

74

147

226

175

226

4

4

91

121

49

175

20000

20000

20000

20000

20000

20000

20000

20000

20000

20000

20000

20000

2205

1486

2944

4521

3496

4521

80

80

1820

2420

973

3496

S4

built up Transport, lorry >32t, EURO4/RER Transport, freight, rail/RER

tkm

19595

15325

25500

60600

39000

42950

2998

2998

10854

13538

2635

43817

tkm

2230

2400

3000

7200

8000

5400

473

473

2240

2800

947

4833

Cables and electronics. Cables have a copper core and are PVC coated with a thickness of 1mm and HDPE outside coating with 2.5 mm thickness. Additional 20 kg PP, granulate was used. Cables inside tower were dependent on hub height (h). It was assumed that there were 3 inside cables with a crosssection, A of 640 mm2. The cables from the tower base to the grid were independent of turbine size. Assumptions were: 3 outside cables with a cross-section, A of 50 mm2 and distance to the grid of 1000 m.

Table S7 LCI of the electronic cables adapted from (LIT), used in all turbine configurations Unit process Copper, at regional storage Wire drawing, copper PVC, at regional storage Polyethylene, HDPE, granulate, at plant PP, granulate, at plant Extrusion, plastic pipes Transport, lorry 16-32t, EURO4/RER Transport, freight, rail/RER

Unit kg kg kg kg kg kg tkm tkm

Outside cables 1338 1338 79 186 20 285 325 1623

Parameterization 3A ρ h 3A ρ h

/ 200 1000

The electronic box was assumed the same for all turbine sizes.

Table S8

LCI of the electronics box adapted from Martinez, 2009 used in all turbine

configurations.4 Unit process Copper, at regional storage Wire drawing, copper Tin, at regional storage Steel, low-alloyed, at plant Section bar rolling, steel Lead, at regional storage Aluminium, primary, at plant Sheet rolling, aluminium PVC, at regional storage Polyethylene, HDPE, granulate, at plant Extrusion, plastic pipes Transport, lorry 16-32t, EURO4/RER Transport, freight, rail/RER

Unit kg kg kg kg kg kg kg kg kg kg kg tkm tkm

Amount 3 3 0.5 63 63 0.5 0.04 0.04 6 27 33 20 100

Transport. Transport is modeled consistently throughout all inventories as: • •

100 km, lorry raw materials to plant 100 km, lorry, plant to erection site S5

• •

200 km, train raw materials to plant 800 km, train, plant to erection site

Densities used in the study were: • • • •

1400 kg/m3 950 kg/m3 8920 kg/m3 2380 kg/m3

PVC HDPE Copper Concrete, normal

Table S9 Additional results for scaling factor b and intercept a for ReCiPe impact categories versus D2h3/7 using the ordinary least squares regression technique. 95% CI: 95% confidence interval; R2: coefficient of determination; SE: standard error; n: number of observations. Impact category

Unit

log a (95% CI)

b (95% CI)

R2

SE

n

Ozone depletion

kg CFC-11 eq/kWh

-8.15 (-8.48 – -7.83)

-0.22 (-0.16 – -0.30)

0.79

0.066

12

Human toxicity

kg 1,4-DB eq/kWh

0.66 (0.01 – 1.32)

-0.55 (-0.42 – -0.72)

0.85

0.134

12

Photochemical oxidant formation

kg NMVOC/kWh

-3.14 (-3.55 – -2.72)

-0.28 (-0.20 – -0.39)

0.79

0.084

12

Particulate matter formation

kg PM10 eq/kWh

-3.08 (-3.49 – -2.67)

-0.30 (-0.22 – -0.41)

0.81

0.084

12

Ionising radiation

kg U235 eq/kWh

-1.65 (-2.01 – -1.28)

-0.23 (-0.17 – -0.33)

0.77

0.075

12

Terrestrial acidification

kg SO2 eq/kWh

-2.61 (-3.06 – -2.16)

-0.37 (-0.28 – -0.49)

0.85

0.092

12

Freshwater eutrophication

kg P eq/kWh

-2.75 (-3.35 – -2.15)

-0.51 (-0.39 – -0.67)

0.86

0.123

12

Marine eutrophication

kg N eq/kWh

-4.08 (-4.52 – -3.64)

-0.30 (-0.22 – -0.41)

0.79

0.089

12

Terrestrial ecotoxicity

kg 1,4-DB eq/kWh

-3.95 (-4.38 – -3.52)

-0.40 (-0.31 – -0.51)

0.88

0.087

12

Marine ecotoxicity

kg 1,4-DB eq/kWh

-1.57 (-2.05 – -1.08)

-0.40 (-0.30 – -0.52)

0.85

0.098

12

Agricultural land occupation

m2a/kWh

-2.54 (-2.88 – -2.19)

-0.24 (-0.17 – -0.33)

0.79

0.070

12 12

Natural land transformation

m2/kWh

-4.75 (-5.20 – -4.30)

-0.28 (-0.20 – -0.39)

0.76

0.092

Water depletion

m3/kWh

-2.78 (-3.11 – -2.45)

-0.25 (-0.19 – -0.34)

0.82

0.068

12

Fossil depletion

kg oil eq/kWh

-1.47 (-1.85 – -1.09)

-0.22 (-0.15 – -0.31)

0.73

0.078

12

Environmental progress rates Table S10 Wind power turbine production in EU.10 Year

Installed wind power per year (MW/a)

1990

Cumulative installed power in the EU (MW) 439

1991

190

629

1992

215

844

1993

367

1211

1994

472

1683

1995

814

2497

1996

979

3476

S6

1996

979

3476

1997

1277

4753

1998

1700

6453

1999

3225

9678

2000

3209

12887

2001

4428

17315

2001

4428

17315

2002

5913

23228

2003

5462

28690

2004

5838

34528

2005

6204

40732

2006

7592

48324

2007

8535

56859

2008

8484

65343

Table S11

Environmental progress rates (EPR) versus cumulative production. Results for

ReCiPe impact categories using the ordinary least squares regression technique. 95% CI: 95% confidence interval; n: number of observations; R2: coefficient of determination. R2

Impact category

Unit

log a (95% CI)

b (95% CI)

n

Climate change

kg CO2 eq/kWh

-0.97 (-1.30 – -0.64)

-0.22 (-0.15 – -0.31)

10 0.81

EPR 86%

Ozone depletion

kg CFC-11 eq/kWh

-8.20 (-8.51 – -7.89)

-0.22 (-0.15 – -0.30)

10 0.82

86%

Human toxicity

kg 1,4-DB eq/kWh

0.51 (-0.20 – 1.21)

-0.54 (-0.39 – -0.74)

10 0.85

69%

Photochemical oxidant formation

kg NMVOC/kWh

-3.20 (-3.59 – -2.80)

-0.28 (-0.20 – -0.39)

10 0.82

83%

Particulate matter formation

kg PM10 eq/kWh

-3.15 (-3.52 – -2.77)

-0.30 (-0.22 – -0.40)

10 0.86

81%

Ionising radiation

kg U235 eq/kWh

-1.68 (-2.00 – -1.36)

-0.23 (-0.17 – -0.32)

10 0.84

85%

Terrestrial acidification

kg SO2 eq/kWh

-2.71 (-3.16 – -2.26)

-0.36 (-0.27 – -0.49)

10 0.86

78%

Freshwater eutrophication

kg P eq/kWh

-2.89 (-3.54 – -2.25)

-0.50 (-0.37 – -0.68)

10 0.85

71%

Marine eutrophication

kg N eq/kWh

-4.18 (-4.63 – -3.72)

-0.29 (-0.20 – -0.41)

10 0.80

83%

Terrestrial ecotoxicity

kg 1,4-DB eq/kWh

-4.06 (-4.49 – -3.63)

-0.39 (-0.30 – -0.51)

10 0.89

76%

Freshwater ecotoxicity

kg 1,4-DB eq/kWh

-1.76 (-2.18 – -1.33)

-0.38 (-0.28 – -0.49)

10 0.88

77%

Marine ecotoxicity

kg 1,4-DB eq/kWh

-1.68 (-2.11 – -1.24)

-0.39 (-0.29 – -0.51)

10 0.88

76%

Agricultural land occupation

m2a/kWh

-2.57 (-2.89 – -2.25)

-0.24 (-0.17 – -0.33)

10 0.84

85%

Urban land occupation

m2a/kWh

0.19 (-0.50 – 0.88)

-0.80 (-0.65 – -0.99)

10 0.93

57%

Natural land transformation

m2/kWh

-4.80 (-5.24 – -4.37)

-0.28 (-0.19 – -0.40)

10 0.80

83%

Water depletion

m3/kWh

-2.84 (-3.18 – -2.51)

-0.25 (-0.18 – -0.34)

10 0.84

84%

Metal depletion

kg Fe eq/kWh

-0.31 (-0.71 – 0.09)

-0.34 (-0.25 – -0.45)

10 0.87

79%

Fossil depletion

kg oil eq/kWh

-1.51 (-1.87 – -1.14)

-0.22 (-0.15 – -0.32)

10 0.77

86%

Sensitivity analysis S7

Table S12 Results of the sensitivity analysis of assumed wind speed. The maximum captured power at wind speed v1A = 5 m/s and v1B = 15m/s. Source

Rated power [kW]

Maximum captured power, Pcaptured, max [kW] v1A = 5 m/s

v1B = 15 m/s

1

660

219

5920

2

500

98

2638

3

850

203

5493

3

3000

689

18612

4

2000

480

12957

5

1650

545

14706

6

30

8

206

6

150

32

855

6

600

117

3157

6

800

174

4696

7

600

116

3121

8

1500

344

9277

Table S13 Results for scaling factor b and intercept a for ReCiPe impact categories versus D2h3/7 using a wind speed of v2 = 15m/s. 95% CI: 95% confidence interval; R2: coefficient of determination; SE: standard error; n: number of observations. Impact category

Unit

log a (95% CI)

b (95% CI)

n

SE

R2

Climate change

kg CO2 eq/kWh

-2.36 (-2.70 – -2.02)

-0.22 (-0.16 – -0.31)

12 0.070

0.77

Ozone depletion

kg CFC-11 eq/kWh

-9.58 (-9.91 – -9.26)

-0.22 (-0.16 – -0.30)

12 0.066

0.79

Human toxicity

kg 1,4-DB eq/kWh

-0.77 (-1.43 – -0.11)

-0.55 (-0.42 – -0.72)

12 0.134

0.85

Photochemical oxidant formation

kg NMVOC/kWh

-4.57 (-4.98 – -4.16)

-0.28 (-0.20 – -0.39)

12 0.084

0.79

Particulate matter formation

kg PM10 eq/kWh

-4.51 (-4.93 – -4.10)

-0.30 (-0.22 – -0.41)

12 0.084

0.81

Ionising radiation

kg U235 eq/kWh

-3.08 (-3.44 – -2.71)

-0.23 (-0.17 – -0.33)

12 0.075

0.77

Terrestrial acidification

kg SO2 eq/kWh

-4.04 (-4.49 – -3.59)

-0.37 (-0.28 – -0.49)

12 0.092

0.85

Freshwater eutrophication

kg P eq/kWh

-4.18 (-4.78 – -3.58)

-0.51 (-0.39 – -0.67)

12 0.123

0.86

Marine eutrophication

kg N eq/kWh

-5.51 (-5.95 – -5.07)

-0.30 (-0.22 – -0.41)

12 0.089

0.79

Terrestrial ecotoxicity

kg 1,4-DB eq/kWh

-5.39 (-5.82 – -4.96)

-0.40 (-0.31 – -0.51)

12 0.087

0.88

Freshwater ecotoxicity

kg 1,4-DB eq/kWh

-3.09 (-3.56 – -2.61)

-0.39 (-0.29 – -0.51)

12 0.097

0.84

Marine ecotoxicity

kg 1,4-DB eq/kWh

-3.00 (-3.48 – -2.51)

-0.40 (-0.30 – -0.52)

12 0.098

0.85

Agricultural land occupation

m2a/kWh

-3.97 (-4.31 – -3.62)

-0.24 (-0.17 – -0.33)

12 0.070

0.79

Urban land occupation

m2a/kWh

-0.85 (-1.02 – -0.67)

-0.87 (-0.82 – -0.91)

12 0.036

0.995

Natural land transformation

m2/kWh

-6.18 (-6.63 – -5.73)

-0.28 (-0.20 – -0.39)

12 0.092

0.76

Water depletion

m3/kWh

-4.21 (-4.55 – -3.88)

-0.25 (-0.19 – -0.34)

12 0.068

0.82

Metal depletion

kg Fe eq/kWh

-1.65 (-2.11 – -1.20)

-0.35 (-0.26 – -0.46)

12 0.093

0.83

Fossil depletion

kg oil eq/kWh

-2.90 (-3.28 – -2.52)

-0.22 (-0.15 – -0.31)

12 0.078

0.73

S8

Calculation of the scaling factor of generator efficiency According to previous work, efficiency (ε) is expected to scale with power according to a scaling law.11 Minimum (91.6% for a generator in a 20kW turbine) and average generator efficiency (94%) were reported in literature. 12, 13 The difference between the minimum and the average efficiency was 2.4%. The maximum efficiency was defined as 96.4% (94% + 2.4%) and was allocated to the largest turbine in the study (655kW). With these estimations, a power law with the following function was derived: ε = 0.88 P0.014 This power law was used to scale the efficiency as well as the electric power output Pel of the wind turbine (see Table S14). The deviation between the scaled Pel and the non-scaled Pel could then be calculated.

Table S14 Results of the sensitivity analysis of scaling the generator efficiency versus a constant generation efficiency of 94%. Source

Rated power [kW]

Scaled efficiency Pel with scaled efficiency [kW]

Pel with average efficiency of 94% [kW]

Deviation

1

660

0.955

199

208

-1.6%

2

500

0.944

88

93

-0.4%

3

850

0.954

184

193

-1.5%

3

3000

0.964

631

655

-2.6%

4

2000

0.965

440

456

-2.7%

5

1650

0.967

500

517

-2.9%

6

30

0.916

7

7

2.6%

6

150

0.929

28

30

1.2%

6

600

0.946

105

111

-0.7%

6

800

0.952

157

165

-1.2%

7

600

0.946

104

110

-0.7%

8

1500

0.961

314

326

-2.2%

Table S15 Exponent b and intercept a for non-renewable cumulative energy demand (CED and IMPACT2002+ impact categories versus D2h3/7 using the ordinary least squares regression technique. 95% CI: 95% confidence interval; R2: coefficient of determination; SE: standard error; n: number of observations.

S9

Impact category

Unit

log a (95% CI)

b (95% CI)

R2

SE

n

Non-renewable CED

MJ/kWh

0.79 (0.41 – 1.17)

-0.23 (-0.16 – -0.33)

0.75

0.077

12

IMPACT 2002+

Pt./kWh

-3.39 (-3.77 – -3.02)

-0.31 (-0.24 – -0.41)

0.85

0.076

12

Literature Cited (1) Ardente, F.; Beccali, M.; Cellura, M.; Lo Brano, V. Energy performances and life cycle assessment of an Italian wind farm. Renew. Sust. Energ. Rev. 2008, 12 (1), 200-217. (2) Schleisner, L. Life cycle assessment of a wind farm and related externalities. Renew. Energ. 2000, 20 (3), 279288. (3) Crawford, R. H. Life cycle energy and greenhouse emissions analysis of wind turbines and the effect of size on energy yield. Renew. Sust. Energ. Rev. 2009, 13, 2653-2660. (4) Martinez, E.; et al. Life-cycle assessment of a 2-MW rated power wind turbine: CML method. Int. J. LCA. 2009, 14 (1), 52-63. (5) Life cycle assessment of electricity producede from onshore sited wind power plants based on Vestas V82-1.65 MW turbines; Vestas, 2006. (6) Burger, B.; Bauer, C. Final report ecoinvent No. 6-XIII. In Sachbilanzen von Energiesystemen: Grundlagen für den ökologischen Vergleich von Energiesystemen und den Einbezug von Energiesystemen in Ökobilanzen für die Schweiz;R. Dones, Editor. Paul Scherrer Institut Villigen, Swiss Centre for Life Cycle Inventories: Dübendorf, CH, 2007. (7) McCulloch, M.; Raynolds, M.; Laurie, M. Life-Cycle Value Assessment of a Wind Turbine; Pembina Institute for Appropriate Development: Alberty, Canada, 2000. (8) Chataignere, A.; Boulch, D. L. E. ECLIPSE - Wind turbine (WT) systems - Final report. 2003. (9) ecoinvent Centre, ecoinvent data v2.0. ecoinvent reports No. 1-25. 2007, Swiss Centre for Life Cycle Inventories, Duebendorf, Switzerland. Retrieved from www.ecoinvent.org. (10) Wind map 2008; European Wind Energy Association EWEA, 2008; www.ewea.org/index.php?id=1665. (11) Caduff, M.; Hujbregts, M. A. J.; Althaus, H.-J.; Hendriks, A. J. Power-Law Relationships for Estimating Mass, Fuel Consumption and Costs of Energy Conversion Equipments. Environ. Sci. Technol. 2011, 45 (2), 751-761. (12) Hau, E. Wind turbines fundamentals, technologies, application, economics. 2nd ed.; Springer: Berlin, 2005. (13) Wu, W.; Ramsden, V. S.; Crawford, T.; Hill, G. A low speed, high-torque, direct-drive permanent magnet generator for wind turbines. In Industry Applications Conference, 2000 Vol.1.; Rome, Italy, 2000.

S10