4.6 Optimization - Penn Math

Report 1 Downloads 70 Views
11/21/2011

4.6 Optimization

Math 103 – Rimmer 4.6 Optimization

Math 103 – Rimmer 4.6 Optimization

4.1

4.1

1

11/21/2011

Math 103 – Rimmer 4.6 Optimization

Fall 2007 Final Exam

A = x ( y + 60 )

constraint 300 = y + x + ( y + 60 ) + x

A = x (120 − x + 60 )

300 = 2 y + 2 x + 60

A = x (180 − x )

240 − 2 x = 2 y y = 120 − x

A = 180 x − x 2

⇒ y = 30

set

smallest x = 1 largest x = 120

A′ = 180 − 2 x = 0

Dimensions of the pen

⇒ 2 x = 180 ⇒ x = 90

90′ × 90′

x

A( x)

1 90 120

179

Absolute Max.

8100

A ( 90 ) = 90 ⋅ 90

7200

A (120 ) = 120 ⋅ 60

Math 103 – Rimmer 4.6 Optimization

A poster has printed material in the middle and a border around it. The poster must contain 60 sq. cm. of printed material. The left and right margins should be 5 cm., the top and bottom margins should be 3 cm. What should be the dimensions of the printed material in order to minimize the amount of paper used for the poster? constraint

A = ( x + 10 )( y + 6 )

3

poster

x

y

printed material

5

5

material

 60  A = ( x + 10 )  + 6  poster  x  600 A = 60 + 6 x + + 60 x A = 120 + 6 x + 600 x −1

A′ = 6 − 600 x −2

3 A (1) = 11 ⋅ 66

must

A = xy = 60 printed

A ( 60 ) = 70 ⋅ 7

A (10 ) = 20 ⋅12

Dim. of pr. mat.

10cm. × 6cm.

6−

600 set =0 x2

600 6= 2 x

6 x 2 = 600

x 2 = 100 ⇒ x = 10

Absolute Min.

y=

60 x

smallest x = 1 largest x = 60

x

A( x)

1 10 60

726 240

490

2

11/21/2011

Math 103 – Rimmer

4.6 Optimization A box with a square base and an open top must have a volume of 4000 cubic cm. Find the dimensions of the box that minimize the amount of material being used.

constraint must

A=  x 2 + 4 xy base

y

V = x 2 y = 4000

4 sides

y=

 4000  A = x2 + 4x  2   x 

x

A = x 2 + 16000 x −1

x

A′′ = 2 + 32000 x −3

A′ = 2 x − 16000 x −2

A′′ is always positive

16000 set 2x − =0 x2 16000 = 2x x2

A is always concave up A is continuous for x > 0

The local min. at x = 20 is actually an absolute min.

⇒y=

Dimensions of box

20cm. × 20cm. ×10cm.

x3 = 8000 ⇒ x = 20

General ellipse equation

Distance from ( x, y ) to (1, 0 )

x2 y 2 + =1 a2 b2

d=

( x − 1) + ( y − 0 )

d=

( x − 1)

−a

a

−b

4x + y = 4 ⇒ 2

2

x2 y2 + =1 1 4

4000 4000 = 202 400

⇒ y = 10

Math 103 – Rimmer 4.6 Optimization

Find the points on the ellipse 4 x 2 + y 2 = 4 that are furthest away from the point (1,0) .

b

4000 x2

2

2

2

+ y2

Instead of maximizing the distance d , we maximize its square D = d 2 2 2 The constraint comes from the fact that

D = ( x − 1) + y

the point ( x, y ) is on the ellipse.

2

D = ( x − 1) + 4 − 4 x D′ = 2 ( x − 1) − 8 x

2

4 x2 + y 2 = 4 ⇒ y 2 = 4 − 4 x2

smallest x = −1 largest x = 1

set

2 x − 2 − 8x = 0 −6 x = 2 ⇒ x = y = 4 − 4( 2

1 9

)=

−1 3

x

D ( x)

32 9

−1

4

−1 3

48 9

4 2 ⇒ y=± 3

 −1 4 2   −1 −4 2   ,  and  ,  3   3 3   3

1 D(

−1 3

)=( ) −4 3

Abs. Max.

0 2

+ 4 − = 169 + 329 = 4 9

48 9

3

11/21/2011

Math 103 – Rimmer 4.6 Optimization

Math 103 – Rimmer 4.6 Optimization

4

11/21/2011

A Norman window has the shape of a rectangle surmounted by a semi-circle. If the perimeter of the window is 30 ft., find the value of x so that the greatest possible amount of light is admitted.

A = xy + π2 ( 2x )

constraint

2

30 = x + y + y + 12 ( 2π

window x 2

π

y

A = xy + 8 x

2

A = x (15 − 12 x − π4 x ) + π8 x 2 1 2

2

π

2

π

A = 15 x − x − 4 x + 8 x

A = 15 x − ( 12 + π8 ) x 2 A = 15 x − ( 4 +8π ) x 2 A′ = 15 − ( 15 = (

4 +π 4

x=

set

4 +π 4

)x 60 4 +π

Math 103 – Rimmer 4.6 Optimization

)x =0

2

x 2

)

30 = x + 2 y + π2 x 30 − x − π2 x = 2 y y = 15 − 12 x − π4 x A′′ = − ( 4+4π ) A′′ is always negative A is always concave down A is continuous for x > 0

The local max. at x =

60 4 +π

is actually an absolute max.

5