y - Penn Math

Report 23 Downloads 46 Views
3/5/2012

Math 103 – Rimmer 3.9Inverse Trig. Functions

f ( x ) = arcsin x

or f ( x ) = sin −1 x

sin −1 x ≠

1 sin x

arcsin ( sin x ) = x sin ( arcsin x ) = x

Math 103 – Rimmer 3.9Inverse Trig. Functions

 −π π  Definition : y = arcsin x is the number in  , for which sin y = x  2 2   3 π Find arcsin   = 3  2  3 when plugged into the sine function. 2 π π 3  Find the angle  b / w − and  on the unit circle that goes with a point with a y − value of . 2 2 2 

Find the angle that gives

 −1  −π Find arcsin   = 6  2  π π −1  Find the angle  b / w − and  on the unit circle that goes with a point with a y − value of . 2 2 2 

Find arcsin ( −1) =

−π 2

π π  Find the angle  b / w − and  on the unit circle that goes with a point with a y − value of − 1. 2 2 

1

3/5/2012

What is the derivative of y = arcsin x? from before: f ( x ) = sin x 1 ′ ( f −1 ) ( x ) = f ′ f −1 ( x ) f ′ ( x ) = cos x ( )

1 ( f )′ ( x ) = cos ( arcsin x) 1

−1

( f )′ ( x ) = ′ x = ( )

(f )

( )( )

this is better written as

1 − sin ( arcsin x ) 2

1

−1

−1

f −1 ( x ) = arcsin x f −1 ′ x = ?

since cos x = 1 − sin 2 x , we have

−1

( f )′ ( x ) =

Math 103 – Rimmer 3.9Inverse Trig. Functions

remember sin ( arcsin x ) = x

1 − sin ( arcsin x ) 

2

y = arcsin x

1

y′ =

1 − x2

1 1 − x2

Math 103 – Rimmer 3.9Inverse Trig. Functions

Let y = arcsin ( 3x ) .  3 Find y ′   .  6 

y′ =

1 1 − ( 3x )

2

⋅ ( 3)

3⋅

3 = 6

3 2

2

 3 3 3 = y ′   = 1 3  6  1− 4 4  3 3 y ′   =  6  1 2

 3 3   = 4  2 

1 1 = 2 4

 3 y ′   = 6  6 

2

3/5/2012

Math 103 – Rimmer 3.9Inverse Trig. Functions

f ( x ) = arccos x or f ( x ) = cos −1 x

cos −1 x ≠

1 cos x

arccos ( cos x ) = x cos ( arccos x ) = x

Math 103 – Rimmer 3.9Inverse Trig. Functions

Definition : y = arccos x is the number in [ 0, π ] for which cos y = x

 −1  2π Find arccos   = 3  2  Find the angle ( b / w 0 and π ) on the unit circle that goes with a point with a x − value of

−1 . 2

 3 π Find arccos   = 6  2  Find the angle ( b / w 0 and π ) on the unit circle that goes with a point with a x − value of

3 . 2

Find arccos ( −1) = π Find the angle ( b / w 0 and π ) on the unit circle that goes with a point with a x − value of − 1.

3

3/5/2012

What is the derivative of y = arccos x? from before: f ( x ) = cos x 1 ′ f −1 ( x ) = f ′ ( x ) = − sin x f ′ f −1 ( x )

( )

(

)

1 ( f )′ ( x ) = − sin ( arccos x) 1

−1

f −1 ( x ) = arccos x f −1 ′ x = ?

( )( )

since sin x = 1 − cos 2 x , we have

−1

( f )′ ( x ) =

Math 103 – Rimmer 3.9Inverse Trig. Functions

− 1 − cos ( arccos x )

this is better written as

2

( f )′ ( x ) =

−1

−1

remember cos ( arccos x ) = x

1 −  cos ( arccos x ) 

2

y = arccos x

( f )′ ( x ) =

−1

−1

y′ =

1 − x2

Fall 2010

y′ =

 −1  ⋅  x −3/ 2  2   1   1−    x

⇒ y′ ( 4 ) =

−1

2

 −1 ⋅ 1  2 ⋅ 43/ 2 1−  4 −1

( )

−1 1 − x2

g=

1 = x −1/ 2 x

g′ =

−1 −3/2 x 2

2

 1  1 since   = x  x

y′ =

Math 103 – Rimmer 3.9Inverse Trig. Functions

 −1  ⋅  3/2  1  2x  1− x −1

 3/ 2 −1  −1   = ⋅ since 43/ 2 =  2 2  = 8   3  2 ⋅8   4 =

1 −1  −1  ⋅  = 3  16  8 3 2

y′ ( 4 ) =

1 8 3

4

3/5/2012

f ( x ) = arctan x or f ( x ) = tan x −1

lim arctan x =

x→− ∞

Math 103 – Rimmer 3.9Inverse Trig. Functions

−π 2

lim arctan x = x →∞

1 tan −1 x ≠ tan x

π 2

arctan ( tan x ) = x tan ( arctan x ) = x

Math 103 – Rimmer 3.9Inverse Trig. Functions

 −π π  Definition : y = arctan x is the number in  , for which tan y = x  2 2 

Find arctan ( −1) =

−π 4

tan ( π2 ) = undef tan ( π3 ) = 3

tan ( π4 ) = 1

Find arctan

( 3 ) = π3

1 3

tan ( π6 ) =

tan ( 0 ) = 0

 −1  −π Find arctan  = 6  3

tan ( −6π ) =

−1 3

tan ( −4π ) = −1

tan ( −3π ) = − 3 tan ( −2π ) = undef

5

3/5/2012

What is the derivative of y = arctan x? from before: f ( x ) = tan x 1 ′ f −1 ( x ) = f ′ ( x ) = sec 2 x f ′ f −1 ( x )

( )

(

)

1 ( f )′ ( x ) = sec ( arctan x)

Math 103 – Rimmer 3.9Inverse Trig. Functions

f −1 ( x ) = arctan x f −1 ′ x = ?

( )( )

since sec2 x = 1 + tan 2 x, we have

−1

2

( f )′ ( x ) = 1 + tan (1arctan x ) −1

this is better written as

2

( f )′ ( x ) =

1

−1

1 +  tan ( arctan x ) 

remember tan ( arctan x ) = x 2

y = arctan x ′ x = ( )

(f ) −1

1 1 + x2

Why is the word arc used?

y′ =

1 1 + x2

Math 103 – Rimmer 3.9Inverse Trig. Functions

arclentgh s = rθ

On the unit circle r = 1,so s = θ

6