7.1 Solving Trigonometric Equations with Identities In this section, we explore the techniques needed to solve more complex trig equations: By Factoring Using the Quadratic Formula Utilizing Trig Identities to simplify
(Section 5.5)
Find all solutions. 10. 8 cos x 6 2
Find all solutions. 11. 7sin 3t 2
Find all solutions on the interval [0, 2 ) . 14. 3sin t 15cos t sin t
18. tan x sin x sin x 0
24. 8sin 2 x 6sin x 1 0
30. 6cos 2 x 7sin x 8 0
34. cos3 t cos t
38. 2sin x cos x sin x 2cos x 1 0 (Hint: Factor by grouping)
40. 3cos x cot x
7.2 Addition and Subtraction Identities Sum and Difference Identities (Formulas)
Rewrite in terms of sin x and cos x . 3 10. sin x 4
2 12. cos x 3
16. tan x 4
Rewriting a Sum of Sine and Cosine as a Single Sine To rewrite m sin( Bx ) n cos(Bx ) as A sin( Bx C ) , where m n A 2 m 2 n 2 , cos(C ) , and sin(C ) A A Rewrite as a single function of the form A sin( Bx C ) . Ex. 2 sin(2𝑥) + 3 cos(2𝑥) 36. sin x 5cos x
38. 3sin 5 x 4cos 5 x
The Product-to-Sum and Sum-to-Product Identities The Product-to-Sum Identities 1 sin( ) cos( ) sin( ) sin( ) 2 1 sin( ) sin( ) cos( ) cos( ) 2 1 cos( ) cos( ) cos( ) cos( ) 2
The Sum-to-Product Identities u v u v sinu sinv 2 sin cos 2 2 u v u v sinu sinv 2 sin cos 2 2 u v u v cosu cosv 2 cos cos 2 2 u v u v cosu cosv 2 sin sin 2 2
Rewrite the product as a sum. 18. 20cos 36t cos 6t
20. 10cos 5 x sin 10 x
Rewrite the sum as a product. 22. cos 6u cos 4u
24. sin h sin 3h
4 1 and cos b , with a and b both in the interval 0, : 5 3 2 a. Find sin a b b. Find cos a b
26. Given sin a
Solve each equation for all solutions. 30. cos 5 x cos 3 x sin 5 x sin 3 x
Prove the identity. tan x 1 44. tan x 4 1 tan x
3 2
32. sin 5 x sin 3x
52. cos x y cos x y cos 2 x sin 2 y
7.3 Double Angle Identities Double-angle Identity:
sin2 2 sin cos
cos2 cos2 sin 2
cos2 2 cos2 1 cos2 1 2 sin 2 2 tan tan 2 1 tan 2
Power Reduction Identity (Formulas for Lowering Powers): 1 − cos 2𝜃 sin2 𝜃 = 2 1 + cos 2𝜃 cos 2 𝜃 = 2 1 − cos 2𝜃 tan2 𝜃 = 1 + cos 2𝜃 Half-angle Identity: 1 cos sin 2 2 1 cos cos 2 2 1 cos 1 cos sin tan 1 cos sin 1 cos 2
Note: Where the + or – sign is determined by the Quadrant of the angle Exercises 1. If cos x a. sin 2x
𝛼 2
.
2 and x is in quadrant IV, then find exact values for (without solving for x): 3
b. cos 2x
x c. cos 2
x d. tan 2
Use the Half- angle Formulas to find the exact value of each expression. Ex2. cos 22.5° Ex3. sin 195°
Ex4. tan
Simplify each expression. Ex5. 2cos2 37 1
7. 6sin 5 x cos(5 x)
6. cos2 6 x sin 2 (6 x)
Solve for all solutions on the interval [0, 2 ) . 8. 2sin 2t 3cos t 0
9𝜋 8
9. cos 2t sin t
Use a double angle, half angle, or power reduction formula to rewrite without exponents. 10. cos 2 (6 x) 11. sin 4 3x
Prove the identity. 12. sin 2 x 1 cos 2 x sin 4 x 2
13.
sin 2
1 cos 2
tan
8.1 Non-right Triangles: Law of Sines and Cosines Find the area of a Triangle
The Law of Sines
Note: The law of Sines is useful when we know a side and the angle opposite it.
Case c (SSA) is referred to as the ambiguous case because the known information may result in two triangles, one triangle, or no triangle at all.
Ex1. Solve the Triangle using the Law of Sines, and find the area of the Triangle.
Ex2. Sketch each triangle, and then solve the triangle using the Law of Sines. a) 𝑏 = 4, 𝑐 = 3, 𝐵 = 40°
b) 𝑏 = 2, 𝑐 = 3, 𝐵 = 40°
c) 𝑎 = 3, 𝑏 = 7, 𝐴 = 70°
Ex3
.
The Law of Cosines
Note: The law of Cosines is use to solve triangles like SAS and SSS.
Ex4. Solve x using the Law of Cosines
Ex5. Solve θ using the Law of Cosines
Ex6. Sketch each triangle, then find the area and solve the triangle using the Law of Cosines. 𝑎 = 40, 𝑏 = 12, 𝑐 = 44
(30o East of North)
(60o West of North)
(70o West of South)
(50o East of South)
Ex7
43. Three circles with radii 6, 7, and 8 respectively, all touch as shown. Find the shaded area bounded by the three circles.
8.2 Polar Coordinates Definition of Polar Coordinates: The polar coordinate system, (𝑟, 𝜃), use distances and directions to specify the location of a point in the plane. r is the distance from O to P ̅̅̅̅ θ is the angle between the polar axis and the segment 𝑂𝑃
Plotting Points in Polar Coordinates 𝜋
Ex. Plot 𝐴 = (1,0), 𝐵 = (3, 2 ) , 𝐶 = (5, −
2𝜋 3
) , 𝐷 = (6,
5𝜋 6
) , 𝐸 = (−6,
5𝜋 6
)
Relation Between Polar (𝒓, 𝜽) and Rectangular (𝒙, 𝒚) Coordinates 𝑥 = 𝑟 cos 𝜃 } 𝑃𝑜𝑙𝑎𝑟 𝑡𝑜 𝑅𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 𝑦 = 𝑟 sin 𝜃 𝑟 = √𝑥 2 + 𝑦 2 𝑦 tan 𝜃 = , 𝑥 ≠ 0 𝑥 𝑥 𝑥 𝑅𝑒𝑐𝑡𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑡𝑜 𝑃𝑜𝑙𝑎𝑟 cos 𝜃 = = 𝑟 √𝑥 2 + 𝑦 2 𝑦 𝑦 sin 𝜃 = = 𝑟 √𝑥 2 + 𝑦 2 }
Convert the Polar coordinate to a Cartesian coordinate 7 1. 7, 6
7 3. 4, 4
11. (3, 2)
Convert the Cartesian coordinate to a Polar coordinate 13. (4, 2)
Ex.(−√6, √2)
Ex. (-5, -5)
Convert the Cartesian equation to a Polar equation. Express your answer as 𝑟 = 𝑓(𝜃) (Note, 𝑥 = rcos 𝜃, and 𝑦 = 𝑟 sin 𝜃) 21. x 3 23. y 4 x 2 25. x 2 y 2 4 y 27. x 2 y 2 x
Convert the Polar equation to a Cartesian equation. (Note, 𝑟 cos 𝜃 = 𝑥, 𝑟 sin 𝜃 = 𝑦 , 𝑎𝑛𝑑 𝑟 2 = 𝑥 2 + 𝑦 2 ) 4 29. r 3sin 31. r 35. r r cos 2 sin 7 cos
Use calculator to sketch a graph of the polar equation 49. r 3cos 51. r 3sin 2