Supplementary Information for
Coloring Semitransparent Perovskite Solar Cells via Dielectric Mirrors César Omar Ramírez Quiroz † a, Carina Bronnbauer† a,b, Ievgen Levchuka, Yi Hou a,b, Christoph J. Brabeca,c , Karen Forbericha
a
Friedrich-Alexander University Erlangen-Nuremberg, Institute of Materials for Electronics and Energy Technology (I-MEET), Department of Materials Science and Engineering, Erlangen, Germany. b
Friedrich-Alexander University Erlangen-Nuremberg, Erlangen Graduate School in Advanced Optical Technologies (SAOT), Erlangen, Germany. c
Friedrich-Alexander University Erlangen-Nuremberg, Bavarian Center for Applied Energy Research (ZAE Bayern), Erlangen, Germany.
AUTHORS INFORMATION: C.O.R.Q.:
[email protected]; I.L.:
[email protected]; Y.H.:
[email protected]; K.F.:
[email protected]; C.J.B.:
[email protected].
† This authors contributed equally to this manuscript.
1
λ0 = 490 nm
400
500 600 700 50 Pristine Cell 100 Wavelenght (nm) λ0 = 490 nm nm 45 λ0 = 490 λ0 = nm nm λ0570 = 570 90 40 λ = 650 nm
b
λ0 = 750 nm HRI
10
LRI
9
30 20 10 0 300
8
6 5 4 40
HRI
2
30
LRI
1 300 nm
EQE (%)
3
Glass
λ0 = 650 nm
λ0 = 570 nm
λ0 = 650 nm
800
0 λ0 = 650 nm λ023_018 = nm nm λ0750 = 760
60 25 50 20
40 15 500 600 30 10 20 5
24_018 25_018 LLB
700
800
λ0 = 490 nm
10 0 6 400 500 600 700 800 0 300 4 300 400 500 600 700 800 2 Wavelenght (nm) Wavelenght (nm) 0 Wavelength (nm) Wavelenght (nm) -2 300 400 500 600 700 800 Pristine Cell 100 λ0 = nm nm λ0490 = 490 100 λ0 = 570 nm nm λ0Wavelenght = 570 (nm) 90 λ0 = nm nm λ0650 = 650 90 λ0 = nm nm λ0750 = 760 80 80 23_018 70 24_018 70 60 25_018 60 50 LLB 50 40 40 400 500 600 700 800 30 30 20 20 10 λ0 = 490 nm 10 0 0 300 400 500 600 700 800 300 (nm) 400 500 600 700 800 Wavelenght
ΔEQE (%)
: : : :
7
400
80 35 70 30
λ0 = 570 nm
20 10 0 300
c
Transmittance(%) (%) Transmittance
a
EQE (%)
40
Reflection (%) (%) Transmittance
ΔEQE (%)
6 4 2 0 -2 300
λ0 = 570 nm
EQE (%) Absorbance Absorbance
2 μm Wavelength (nm) Wavelenght (nm) Wavelenght (nm) 850 -0.006246 d e 848 0.093736 40 1 Pristine cell; AL = ~40nm 8468 0.092914 Pristine Cell No. of layers 2 6 4 10 λ0λ0 = 490 nm = 490 nm 844 0.096131 λ0λ0 = 570 nm = 570 nm 30 0.8 λ0λ0 = 650 nm 842 0.093387 = 650 nm λ0λ0 = 750 nm = 760 nm 840 0.094137 20 838 0.093854 0.6 836 0.091502 10 834 0.092998 832 0.092222 0.4 830 0.091634 0 300 400 500 600 700 800 828 0.092768 0.2 826 0.089721 25 mm 824 0.092424 822 0.09251 0 820 0.088884 300 400 500 600 700 800 818 0.092181 Wavelenght (nm) 816 0.092193 Wavelenght (nm) Wavelength (nm) 814 0.09092 812 0.090928 810 0.091269 808 0.090823 806 0.089522 Figure S1. Representative cross-section scanning electron microscopy micrographs for dielectric mirror with 804 0.090498 802 refractive 0.091202index (HRI) layers are deposited consecutively λ0 = 750 nm; low refractive index (LRI) and high 800 0.08922 comprising 10 layers (a). Total reflection spectra of 0.091551 dielectric mirrors (b). Total transmittance spectra of 798 dielectric mirrors (c). Absorbance spectra of796 full cell, excluding the electrode, for solar cell with active layer of 0.090771 0.088031 ~40 nm along with utilized mirrors (d). Color794 intensity as a function of number of alternating layers (e). 792 0.088965 790 0.089574 788 0.089165 786 0.088694 784 0.088717 782 0.089529 780 0.08809 778 0.088238 776 0.088571 774 0.089948 772 0.091015 770 0.091035 768 0.090649 2 766 0.09123 764 0.09173
λ0 = 650
Light on Light on
Camera
Dielectric mirror
Solar cell
Light on
Light off
d Dielectric mirror
Camera
Solar Cell
Light on Light off
c Dielectric mirror
Camera
Solar cell
Light on
b Dielectric mirror
a
Daytime condition
Solar Cell
Nighttime condition
Light on
Camera
Figure S2. Schematic representation of different illumination conditions.
a
Pristine Cell
λ0 = 490 nm
λ0 = 570 nm λ0 = 650 nm
λ0 = 750 nm
View from cell AL = 160 nm View from mirror
25 mm
b
Pristine Cell
λ0 = 490 nm
λ0 = 570 nm λ0 = 650 nm
λ0 = 750 nm
View from mirror
AL = 40 nm View from cell
25 mm
Figure S3. Digital images (aperture f/8, shutter speed of 1/100 s, ISO 100 and 15 mW cm-2 back illumination) for pristine cell, bare dielectric mirror and full device stack comprising perovskite solar cell with active layer of ~130 nm and dielectric mirror, including view from the solar cell and form the mirror (a). Digital images (aperture f/8, shutter speed of 1/100 s, ISO 100 and no back light illumination) for pristine cell, bare dielectric mirror and full device stack comprising perovskite solar cell with active layer ~160 nm and dielectric mirror, including view from the solar cell and form the mirror (b).
3
0
25
25_018
20
LLB
500 15
600
ΔEQE (%)
400
800
10 5 0 300
λ0 = 490 nm 400
500
600
700
30 20 10
400
ΔEQE (%)
700
20 20 10 10
30
10
λ0 = 490 nm
Wavelenght (nm)
300 300
400 400
40
500 500
0 300
400
λ0 = 570 nm
Pristine Cell Pristine Cell λ0λ0 = 490 nm = 490 nm λ0λ0 = 570 nm = 570 nm λ0 = 650 nm λ0 = 760 nm
e
Wavelenght (nm) Wavelenght (nm) Wavelenght(nm) (nm) Wavelength
700
600 600
λ0 = 650 nm
λ0 = 570 nm
λ0 = 650 nm
800
Pristine Cell Pristine Cell λ0λ0 = 490 nm = 490 nm 0
80 80 70 70
λ0λ0 = 650 nm = 650 nm λ0λ0 = 750 nm = 760 nm 23_018
60 60
24_018
50 50
25_018 LLB λ0 =
30 30 500 600 λ0 = 20 20 650 nm
700 700
0 0 300 300
800 800
650 nm
700
10 10
Pristine Cell Wavelength (nm) Wavelenght (nm) λ0 = 490 nm
30
600
90 90
40 40 λ0 = 570 nm
λ0 = 490 nm
λ = 650 nm
800
EQE (%)
800
100 100 500
λ0 = 570 nm
Wavelenghtλ(nm) = 570 nm λ0 = 570 nm
700 20 800
30 30
800
λ0 = 490 nm 400 400
500 500
600 600
700 700
800 800
Wavelength (nm) (nm) Wavelenght (nm) Wavelenght
λ0 = 570 nm λ0 λ0 = 650 nm nm = 650 λ0 λ0 = 750 nm nm = 760
f
40
100
30 20 800 10 0 300
400
Pristine Cell λ0λ0 = 490 nm = 490 nm λ0λ0 = 570 nm = 570 nm λ0λ0 = 650 nm = 650 nm λ0λ0 = 750 nm = 760 nm
90 80 70 60 50 40
30 500
600
700
800
20 10
700
0 300
800
400
500
600
700
800
Wavelenght (nm) Wavelenght (nm)
Wavelenght (nm) Wavelength (nm)
Wavelength (nm)
100
Figure S4. Total transmittance spectra of 90 pristine cell and full stack including dielectric mirrors (a). Total reflection spectra of pristine cell and full stack on which light-front impinges the dielectric mirror first (b). Total 80 70 stack on which light-front impinges the cell first (c). Set of reflection spectra of pristine cell and full 60 measurements were taken for the active layer thickness of ~130 nm (a-c) and ~160 (d-f). Reflection DM First (%)
0 300
600
30 100 20 100 50 Pristine Cell λ0λ0 = 490 nm 90 = 490 nm 90 45 λ0λ0 = 570 nm = 570 nm 20 10 λ0λ0 = 650 nm 80 = 650 nm 80 40 λ0λ0 = 750 nm = 760 nm 70 70 10 0 35 60 300 60 400 500 600 700 30 0 50 50 25 300 400 500 600 700 800 40 40 20 30 30 500 700 800 15 600 20 20 10 Wavelenght (nm) 10 10 5 0 0 Wavelenght (nm) 0 300 400 500 600 700 800 300 400 500 600 300 400 500 600 700 800
EQE (%)
EQE (%)
40
Transmittance(%) (%) Transmittance
d
500
LLB
0 0 0 Wavelenght (nm)
Wavelenght (nm) Wavelength (nm) Wavelenght (nm) 40
LLB
25_018
50 50 500 600 40 40
λ0 = 570 nm
25_018
24_018
70 70 0 300 60 60 400
10 0 300
700
80 80
24_018
Reflection Cell First (%)
24_018
23_018
c 400
Reflection DM First (%)
400
23_018
30
10
λ0 = 760 nm
EQE (%)
10
35
λ0 = 490 nm
Reflection DM First (%)
20
20
λ0 = 650 nm
nm
b
90 90
0
λ0 = 570 nm
EQE (%)
Wavelenght (nm) 40
30
800
λ0 = 490 nm
6 500 600 Pristine 700 800 Cell 4 λ0 = 490 nm 2 λ0 = 570 nm Wavelenght (nm) 500 600 700 800 λ0 λ0 = 650 nm nm Pristine Cell = 650 Pristine Cell 0 λ0λ0 = 490 nm λ0 λ0 = 750 nm nm = 760 = 490 nm -2 λ0λ0 = 570 nm = 570 nm Wavelenght (nm) 23_018 20 100 100 λ0 = 650 nm 40 300
Reflection DM First (%)
λ0λ0 = 490 nm = 490 nm λ0λ0 = 570 nm = 570 nm λ0λ0 = 650 nm = 650 nm λ0λ0 = 750 nm = 760 nm
EQE (%)
Pristine Cell 600 700
45
30
0 300
50 500
EQE (%)
a 400
Transmittance (%)
EQE (%)
ΔEQE (%)
6 4 2 0 -2 40 300
6 λ0 = 570 4 2 0 -2 40 300 30 400
ΔEQE (%)
λ0 = 490 nm
6 4 nm2 λ0 = 650 0 -2 40 300 400
0
50 40 30 20 10 0 300
400
500
600
700
800
Wavelenght (nm)
4
-3
Current
0.144524 0.136585 -6.27756 0.136951 0.130044 -6.2105 0.130036 0.123234 -6.15229 0.122537 0.116615 -6.09674 0.115945 0.11016 -6.05034 0.108691 0.103549 -5.99816 0.101426 0.0968716 -5.94987 0.094472 0.0902801 -5.90514 0.087861 0.0838521 -5.86159 0.080833 0.0772722 -5.81684 Dev. 6 0.074113 0.0707546 -5.77535 0.198075 Dev. 5 Dev. 6 -8.3063 0.067681 0.0644824 -5.73492 0.191320.198075 -7.5241 -8.3063 0.211882 0.060524 0.057883 -5.69221 0.205025 0.184729 -7.16731 -7.5241 0.0536020.19132 0.0514511 -5.65197 0.19762 0.184729 -7.16731 0.047178 0.0450387 0.177697 -6.94208 -5.61305 0.190553 0.177697 -6.94208 0.040313 0.17068 0.0385913 -6.77337 -5.57075 0.183829 0.0335850.17068 0.0320659 -5.52882 0.163754 -6.64152-6.77337 0.175114 0.163754 -6.64152 0.026799 0.0255873 0.157077 -6.53096 -5.48642 0.16733 0.157077 -6.53096 0.020203 0.0192567 0.150271 -6.44041 -5.44957 0.15934 0.150271 -6.44041 0.013444 0.0129144 -5.40492 0.143274 -6.34906 0.152164 0.143274 -6.34906 0.006642 0.0063579 -5.3549 0.1365850.136585-6.27756-6.27756 0.144524 0.000105 3.117E-05 -5.30486 0.130044 -6.2105 0.136951 0.130044 -6.2105 0.006747 0.006389 -5.25783 0.123234 -6.15229-6.15229 0.130036 0.123234 0.013222 0.0126222 -5.20531 0.116615 -6.09674-6.09674 0.122537 0.116615 0.019954 0.0189684 -5.15593 0.115945 0.11016 -6.05034-6.05034 0.026440.11016 0.0253302 -5.09693 0.108691 0.103549 0.103549 -5.99816-5.99816 0.033406 0.0317075 -5.03447 0.101426 0.0968716 0.040005 0.0383069 -4.97022 0.0968716 -5.94987-5.94987 0.094472 0.0902801 0.046488 0.0445011 -4.90222 0.0902801 -5.90514-5.90514 0.087861 0.0838521 -5.86159 0.053422 0.0509096 0.0838521 -5.86159 -4.82171 0.080833 0.0772722 -5.81684 0.060209 0.0575285 0.0772722 -5.81684 -4.73503 0.074113 0.0707546 -5.77535 0.06675 0.0638396 -4.64125 0.0707546 -5.77535-5.73492 0.067681 0.0644824 0.074039 0.0705481 -4.53259 0.0644824 -5.73492 0.060524 0.057883 -5.69221 0.081258 0.0774747 -4.40488 0.057883 -5.69221 0.053602 0.0514511 -5.65197 0.089333 0.084265 -4.2645 0.0514511 -5.65197 0.047178 0.0450387 -5.61305 0.09977 0.0925747 -4.06292 0.0450387 -5.61305 0.040313 0.0385913 -5.57075 0.116756 0.103008 -3.79827 0.033585 0.0320659 0.0385913 -5.57075-5.52882 0.153263 0.120757 -3.39504 0.026799 0.0255873 -5.48642 0.0320659 -5.52882 0.241283 0.15911 -2.80613 0.020203 0.0192567 0.469574 0.2595 -1.77417 0.0255873 -5.48642-5.44957 0.013444 0.0129144 1.03487 0.508609 0.13261 0.0192567 -5.44957-5.40492 0.006642 0.0063579 -5.3549 2.38151 1.09598 0.0129144 -5.40492 3.246755 0.000105 -5.30486 5.29823.117E-05 2.41512 7.97761 0.0063579 -5.3549 0.006747 -5.25783 10.52580.006389 5.02685 13.2783 3.117E-05 -5.30486 0.013222 0.0126222 -5.20531 20.712 9.61797 22.8784 0.006389 -5.25783-5.15593 0.019954 0.0189684 33.6694 18.4822 32.8528 0.0126222 -5.20531-5.09693 0.02644 0.0253302 0.0189684 -5.15593-5.03447 0.033406 0.0317075 0.0253302 -5.09693-4.97022 0.040005 0.0383069 0.046488 0.0445011 0.0317075 -5.03447-4.90222 -2 sc -4.82171 0.053422 0.0509096 0.0383069 -4.97022 0.060209 0.0575285 0.0445011 -4.90222-4.73503 0.06675 0.0638396 0.0509096 -4.82171-4.64125 0.074039 0.0705481 -4.53259 0.0575285 -4.73503 0.081258 0.0774747 -4.40488 0.0638396 -4.64125 0.089333 0.084265 -4.2645 0.0705481 -4.53259 0.09977 0.0925747 -4.06292 0.0774747 0.116756 0.103008-4.40488-3.79827 0.0842650.120757-4.2645 -3.39504 0.153263 0.09257470.15911-4.06292-2.80613 0.241283 0.103008 0.2595 -3.79827-1.77417 0.469574 1.03487 0.1207570.508609-3.39504 0.13261 2.38151 0.15911 1.09598-2.806133.246755 5.2982 0.2595 2.41512-1.77417 7.97761 10.5258 0.5086095.02685 0.13261 13.2783 20.712 1.09598 9.617973.246755 22.8784 33.6694 18.4822 32.8528
-4 -5 -6 -0.2
Absolute Values Absolute Values ent Density Vs Voltage (dark)
0
0.2
0.4
0.6
0.8
1
Voltage (V)
Current Density Vs Voltage (dark)
Current Density (mA/cm22) 2 CurrentDensity Density(mA/cm (mA/cm Current ) )
2 2 2
t=
1
0 h!
t=t= h;0PCE h! h! = 3.65 ± 0.4% t =0 1704 t = 1704 h; PCE t = 1704 h! = 3.43 ± 0.6%
1 1
0
0 0
-1
-1 -1
-2
-2 -2 -3 -3 -3 -4 -4 -4 -5 -5 -5 -6 -6 -0.2 -0.2 0 0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8
1 1
Voltage Voltage(V) (V) Voltage (V)
2) (mA/cm 2) CurrentCurrent DensityDensity (mA/cm
Figure S5 j-v characterization of devices2 after 1704 hours in storage under nitrogen atmosphere. A total 1 of six cells were measured along the experimentation time while being constantly exposed the 2 environment for short periods of time for 0 measuring purposes. 1
-1
0
-2
-1
-3 Table S1. Key metrics for perovskite solar cell (AL = ~130 and ~160 nm) with the implementation of -2 -4 dielectric mirrors.
ID
-3 -5
EQE
1 -4 Sol. Sim. -6
J (mA cm )
-5 -2) Jsc (mA cm
Pristine Cell;
-0.2
-6 -0.2
130 nm
12.37
13.20
160 nm
13.78
14.78
ΔJsc (%)a 0
0.2
0.4
Voc (V) 0.6
PCEb
T (%)c
68.9
8.3
14.6
20.3
FF (%)
0.8
1
0.8
1
AVT (%)d
Voltage (V) 0
0.2
0.4
0.6
Voltage (V) 0.97 -
-
0.97
69.7
9.3
9.4
15.7
12.84
3.8
0.97
68.9
8.6
6.0
14.4
14.40
4.5
0.97
69.7
9.7
4.0
11.6
13.66
10.4
0.97
68.9
9.1
1.3
8.4
15.29
11.0
0.97
69.7
10.3
0.8
7.1
130 nm
13.76
11.2
0.97
68.9
9.2
2.4
5.1
160 nm
15.58
13.1
0.97
69.7
10.5
1.4
4.2
130 nm
13.74
11.1
0.97
68.9
9.2
10.2
5.4
160 nm
15.76
14.4
0.97
69.7
10.7
6.5
3.5
λ0 = 490 nm; 130 nm 160 nm
2.41512 5.02685 9.61797 18.4822
λ0 = 570 nm; 130 nm 160 nm
7.97761 13.2783 22.8784 32.8528
λ0 = 650 nm;
λ0 = 740 nm;
*
All values derived from J-V and EQE characterization represent the arithmetic mean along 6 samples. ΔJsc (%) is extracted from the increase on EQE-Jsc as a result of incorporating dielectric mirrors to the device architecture. b PCE values are calculated using short circuit photocurrent extracted from EQE characterization. c Transparency convoluted with human sensitivity curve for full devices including dielectric mirror. d Average visible transmittance in the 400 to 800 nm regime for full devices including dielectric mirror. a
5