(:) co+ - Semantic Scholar

Report 0 Downloads 12 Views
Theoretical Computer

Definitions iff q positive c, no such that 0 _< f(n) _< cgCn) vn >_ no.

f(n) = O(g(n)) f(n) = f~(g(n))

iff 3 positive c, no such that f(n) >_ co(m) >_ 0 Vn >_ no.

f(n) = O(g(n))

iff

f(n)

=

O(g(n))

i=i

sup S

Ei'~ i=1 n--1

and

£

limsupa,

lim sup{al [ i >__n,i 6 N}.

(~)

Combinations: Size k subsets of a size n set.

£(

1

:

m

cn+l -- I c--l"

c~ --

/=O

£icl

greatest b 6 R such that b _< s, Vs 6 S . lirn_ inf{a, l i > n, i 6 N}.

-1-

(n+

c

)

£

1,

i=0

I

£

ci = 1 - c '

(c--1) =

£ ,

cp1,

C 1-c'

"

i=1

= n c n + 2 - - ( n - I - 1)Cn+l -I-c

,=o

c'=

c_ s,

infS

~--~ 13 _ n~-(" + 1) ~4 i=l

In general:

iff Ve 6 R, qn0 such that I~- - "I < e, Vn >_ n0.

" - ' =

n

~ - ~ i ~ : nCn+l)(2n6 + I ) ' i=1

i - - nCn2+ 1 ) '

iff lin~_.~ f(n)Ig(n) = O.

lim a . = a

Sheet

Series

fCn) = n(g(n)). /(n) = o(g(n))

Science Cheat

= (n + 1 ) H , - n,

i=l

(~)

1.

£(:)

°'

co+,~(

Hi = \ r n - b 1)

2.£(:):~,

(n -7=)~k~'

-

,)

Hr*+I

-~- 1

m

D -- k

,.~(,+~):(,÷o+1). ~ o

" 1st order Eulerian numbers:

( ~>

Permutations 7r171"2_..71"r~On {1, 2 , . . . , n} with k ascents. ((~ >)

2nd order Eulerian numbers.

C.

Catlan Numbers: Binary trees with n + 1 vertices.

1,.[~]:~n_x,,.

k=o

¢:I. {o} {o}

o. k£=(O ; ) ( o : ~ ) =

\m + I)

II.

12.

2

=

13.

,o.[;]=~o_,~,~_,,

k

=

1

k

16.[:]=,,

k

=

n

+

k

k

+

19. '

,~.: = i , ~1 ~f~__o,

23.

n-1

k

=

0

otherwise

k=D

n

=

n-I

=

n-i

'

= < ~ > ~6. __~_o ~, n--l-k

24.

'

k=D

= hi,

21. C .

l;=o

1

:

-

k

n+l

'

'

= ( k + l ~ , +(n-k k

2,

-

'

20.

=I.

17. [:]>{o} --

25.

"

3. (:): (n)

k=D

, (:)=~(::~), o.(:)(:):(:)(:-~),

Stirling numbers (2nd kind): Partitions of an n element set into k non-empty sets.

n(n 4- 1)

~ :

k

- (n+

~:

1)2" +

I

(~)

_

'

2

'

--

'

32.

n--1

£ ~2o,~_

1 35.

=

2"

k=o

3°{. _-o} £ (. +o_~)2o 1_ =

37. f n - I ' 1 1 k

k=O

52

n

1)n_ k

k

k=o

'

Theoretical C o m p u t e r

Science Cheat Sheet

Identities Cont. 38.

[n+l]__~ Lm + l J

[;](k) =

£[k]

n '~-j: = n!

Trees

~__o~1 [k]

,

k=0

n

k+l

40" {:}=~(k)(rn_l_a}l,-

. i'" k,

{rn+n-I-l} =£k{n+k} m k 44. (:) = t,~{;::}[k](-l) 42.

f----O

46.

48.

""

)-

' "-k,

[.: o] _-£k=o ((:)):-+ \ 2n

,,.

41. [ : ]

(n--m),(:)

)

:~[;:~](k)(-l)m-~,

rn

45.

Every tree with n vertices has n - 1 edges.

.

k

k=0

:~[;:l]{km}(-l)

""-t,

Kraft inequality: If the depths of the leaves of a binary tree are dl, - -., d.:

'

forn>__m,

fx

E

{ n 7rn}:~(:--;)(m-l-n'~[rn: + kn+k)

k] ' {g:rn}(g~rn) =~t (k~.}{n~nk}(;) ,

[nTrn]---- rE(:--;)(:::){ +

4T.

[,:rn]('~m)

49.

re+k} k

2-a: O

where k = (log 2 ~) a - I . Full history recurrences can often be changed to limited history ones (example): Consider the following recurrence i--1

Simplify:

G(z) Z

x

Solve for G(z):

T,: 1 + ~ ,

To=I.

z

G(z) = (1 - z)(1 - 2.r)

j=0 Note that

Expand this using partial fractions:

i

T,+I= 1+ ~ T j .

G(z)=z

j=0

__.

Subtracting we find i

Ti+l - Ti = 1 + E T J ./=0

\

i--1

And so Ti+1 = 2T~ = 2 i+1.

'1--2z

1-z

i>_o

- ~

- 1- ET j =E(2i+l--l)z ~>o

./=e

=T/. 53

1 -- 2 G ( z ) + 1

S o gi :

2i -

1.

i+I.

xi

)

Theoretical Con, puter Science Cheat Sheet

i

2i

1

2

Pi 2

2

4

3

3 4

8 16

5 7 ii 13 17 19

5

32

6

64

7

128

8

256

9

512

I0

1,024

II

2,048

12

4,096

13

8,192

.14 15 16 17 18 19 20 21 22 23

23 29 31 37 41 43 47 53 59 61 67

16,384 32,768 65,536 131,072 • 262,144 524,288 1,048,576 2,097,152 4,194,304

71

B5

- - ~I,

=

97

67,108,864 134,217,728

I01 103

268,435,456 536,870,912 1,073,741,824 2,147,483,648 4,294,967,296

i Bs = --~-6, i B , o - -- ~'~" 5 ~, Change of base, quadratic formula: log s z - b 4 - ~ / b 2 - - 4ac logb z -- l o g s b ' 2a

e = 1 + ½ + ~ + 2-!~+ i-~uo+ --lira ( l + Z ) " ---- e =. Expectation: If X is discrete (1 + .1-)" < e < (i + ~)"+1 -

E[g(X)] = E

(n~) e lle ( 1 + ~)~ = e - - ~n + 2-~n2 - O

-

25 i, 3

137

' 12'

49

363

60 ' 20 I 1 4 0 '

761 7129 2SO' 2 5 2 0 1 "

H . = Inn + 7 +

O(1)

.

Factorial, Stirling's approximation: 8,

1, "

_ ,

24, 120, 720, 5040, 40320,3628SO,

.

. .

'2 j

a(i,j)=

, aCi--1,2) l a(i- l,a(i,j--1)) ~(i) = min{j [ a(j, j) >_ i}.

EIX] = ~

i= 1 j=l

i,j>2

k = lk

q = l -- p,

(;) pkq.-~

1

1 9 3 6 8 4 1 2 6 126 84 3 6 9 1 1 10 45 120 210 252 210 120 45 10 I

E [ X - Y ] = e [ X ] - ELY], iff X and Y are independent. E[X + Y] = E[X] + E [ Y ] ,

distribution: e-~Ak Pr[X=k]k!

.e_C=_~F/2,~ '

Pr[B lAd Pr[Ai] Pr[Adn] = Y]~'=i Pr[Aj] Pr[BI-4/]" Inclusion-exclusion:

= -v-

n

: i:I

' E[XI=A. Normal (Gauesian) distribution:

1

Pr[X A Y] Pr[B]

E[cX] = c E[X].

Poisson

I

-

Bayes' theorem:

113

11 121 1331 14641 1 5 10 10 5 1 6 15 20 1 5 6 1

Basics: Pr[X v YI = Pr[X] + Pr[Y] - P r [ X A ]'] Pr[X A Y] = Pr[X] - P r ~ ' ] , iff X mad Y are independent. Pr[XIY]

Pr[X = k] = (nk)pl'q "-I',

1

If X continuous then

Variance, standard deviation: VAR[X] = E[X 2] - E[XI "~,

Inn < H , < I n n + 1,

109

Pascal's Triangle

g ( z ) P r [ X = z].

Harmonic numbers:

Binomial distribution:

131

b

then p is the probability density function of X. If P d X < ,q = e(.), then P is the distributionfunction of X. If P and p both exist then

Euler's number e:

107

127

-.61803

Pr[a < x < bl = L p(~) d~:

=

Ackerm~nn's function and inverse:

33,554,432

~

t

~I , B 4 -__- - - ~ '16 ,

B2 =

83 89

26 27

1 828567056288

1, B 1

=

n' : 2x/2"~-~n(-he) ~ (1 + 0 ( 1 ) ) .

25

17213535217

Bernoulli Numbers (B~ = O, odd £ # 1): B0

= ~

Probability Continuous distributions: If

General

79

8,388,608 16,777,216

1

O = 1~V~1.61803,

73

24

28 29 30 31 32

7 ~ 0.5772i,

e ~ 2.71828,

~ 3.14159,

E[X] = ~.

The "coupon collector": We are given a random coupon each day, and there axe n different types of coupons. The distribution of coupons is uniform. The expected number of days to pass before we to collect all n types is

+

i:l k

£ (-1)'+' k=l

]=1

Moment inequalities: 1

Pr [IX I > AE[X]] _< ~,

P, [Ix- ax]l

>_

Geometric distribution: P r [ X = k] = p~-lq,

_
b are integers then gcd(a, b) = $cd(a m o d b, b). If l'I~=t P~' is the prime factorization of z then n

d =

ei+l -

Perfect Numbers: z is an even perfect number iffz = 2"-1(2" - 1 ) and 2 = - 1 is prime. Wilson's theorem: n is a prime iff ( n - 1)! -- - 1 m o d n. M~Jbius inversion: i f / = 1. 1 if i is not square-free• #(i)= 0 ( - I ) " if i is the product of r distinct primes.

If G(a) = E

F(d),

did then dla

Prime numbers:

p. = n l n n + n l n l n n - - n + n + 0

n

7r(n) = ~



A tree with no root. Directed acyclic graph.

Free tree DAG

Eulerian

Fermat's theorem:

s(=) =

Tree



In In n Inn

Graph with a trail visiting each edge exactly once. Hamiltonian Graph with a path visiting each vertex exactly once• Cut A set of edges whose removal increases the num-

ber of components. Cut-set A minimal cut. Cut edge A size 1 cut. k-Connected A graph connected with the removal of any k - 1 vertices. VS C_ V,S ~ @ we have

k-Tough

k.c(V-

k-Regular

A graph where all vertices have degree k. k-Factor A k-regular spanning subgraph. Matching A set of edges, no two of which are adjacent. Clique A set of vertices, all of which are adjacent. Ind. set A set of vertices, none of which are adjacent. Vertex cover A set of vertices which cover all edges. Planar graph A graph which can be embeded in the plane. Plane graph An embedding of a planar graph. E

,

n

2!n

+ (inn)---~-----+ (inn)-----~----

S) < ISl.

deg(v) = 2m.

-EV

If G is planar then n - m + f = 2, so f_< 2 n - 4 , m_< 3 n - f t . Any planar graph has a vertex with degree < 5i

56

(z, y, z), not all x, y and z zero. (~, y, ~) = (ca, c y , ~ )

vc # o.

Cartesian

Projective

(~, y)

(~, y, 1)

y = m z -4- b (m, --1, b) z = e (1, O, - c ) Distance formula, Lp and L=,: metric: j(z

1 -- 2:0) 2 --1-( z 1 -- Zo) "2-"

[1~ - =ol ~ + l~l pli_m [Ix1 -

-o1" +

x/~. ~ol'] 1/,

=ol']

-

Ix1 -

Area of triangle (zo, yo), (Zl. yl) and (z2, y~): l a b s l Z Z - - zo z 2 - - x0

Yl--YO[ Y 2 - - Y0

"

Angle 'formed by three points:

cos 0 = ( ~ ' m)" (~2, y~) ~192

Line through two points (xo, yo)

and (~1, m): zo Y0 I = 0. z l Yl 1 Area of circle, volume of sphere: A ~ 71"r2,

V :

~ r 4 3.

If I have seen farther than others, it is because I have stood on the shoulders of giants. - Issac Newton

Theoretical Computer

Science Cheat Sheet Calculus

Wallis' identity: 2-2-4-4-6.6--r=21-3-3-5-5.7--Brouncker's continued fraction expansion: 12 -1+ s~

2 + ~

Derivatives: 1. d(cu) dx dz

Newton's series: 1 1 ~-_ s 2 + -2 . 3-- 2+ s

2s +---

Sharp's series: 1 (1-

1

1

1

3- .3 * 3,:5

3".7

Euler's series:

T- g,+~+b+r,+~+--1

_ _

~2 1--~ =

I ~ 1"-~ - -

1 I ..~- 3 - - f f - - . ~ . - ~ -

1

~-~ . . . .

D(~) = Q(~) + n(~-----7' where the degree of N ' is less than that of D. Second, factor D ( z ) . Use the following rules: For a non-repeated factor: N(x) A N'(z) i .3L i (z- a)D(x) z- a D(x)' where

[N(=)] A = LD(x)J:=.

For a repeated factor:

IvCx)

"'X-" -'

(z - a)'~D(=) - ~

A~ N'Cz) (z - a)"~-~ + ~ ( z ) '

d~,

d--;

d(,.,) 3.

- u(~) -J

dz

6 '

--

cos u ~du z,

15.

d(arcsin u) = ~ dz

17.

d(arctan u) dz

i

19.

d(arcsec u) dx

i

1

d(e'U)

8.

d o n u) 1 du dz - udz' ..

1 du ux/T'=-~- d x '

1

-csc

2 du ~xx"

du cot u csc u~-~,

20. d(arccsc u) _ -1 du d~ ulx/i--Z~-u2 d x ' 22. d(cosh u) du dz - sinh u ~-~, 24.

25. d(sech u) du d~ -- - s e c h u tanh u ~ ,

~

du

-- -- sln u~z:

18. d ( a r c c o t u ) _ - 1 du dx 1 - u2 dz'

d(tanh u) du dz -- sech2 u ~ z '

dz

=

16. d(arccosu) _ -1 du dz lx/T=-~u2 d z '

1 du 1 - u2 dz'

27. d(arcsinhu) _

cee,~ du,

d~

14. d(csc u) d~ -

du d--~'

du

"

12. d ( c o t u ) T~x

21. d(sinhu)dz -- coshu~-~, 23.

d.

= U-~z -'k V-~z,

10. d(cos u) dz

13. d(sec u) du d~ - tan u see u~-£,

Partial Fractions Let N ( z ) and D(=) be polynomial functions of z. We can break down N ( z ) / D ( x ) rising partial fraction expansion. First, if the degree of N is greater than or equal to the degree of D, divide N by D, obtaining N(~) N'(x)

d,,

= "~z + "~z'

d(tanu) see 2 u ~duz , dx

-~=~+~+~+~+~+... x ~

dz

5. d ( u / v ) _ v ( ~ )

dz

9. d(sin u) dz 11.

1-3 2-4-5.

2.

d(cu) - u du ~ _ ( l n c ) c d'~z'

7. ....

c-~z'

dCu") = ,,u,,_,du, 4.

+ r~... Gregrory's series: ~=1-½+~-~+~

d(u + ,~)

du

=

d(cSChdxu) _

26.

du dz'

d(coth u) u du dx -- - csch2 ~z-z" duxcschu cothu~x

28. d(arccoshu) _ 1 du dz u~-x/fff=-~1 dz"

29. d(arctanhu) _ 1 du dz 1 - u -~ d z '

30. d(arccoth u) 1 du dz - u ~"- 1 dx"

31. d(arcsech u) _ -1 du dz u lvtT-z~u ~- d z ' Integrals:

32. d(arccsch u) dx

-1 du lul lx/i-V-~ d x

1. feudx = cJud,, 3.

f

zn dx = n +----'~'xr'+l''

6.

1 + z 2 - arctan~,

8.

f sin z dz = - cos z,

n ~ -1,

9, i

cos z dz = sin z,

where 1 r dk ( N ( z ) ~ ] A t = ~.. [ ~ kD(z)JJx=, The reasonable m a n adapts himself to the world; the unreasonable persists in trying to adapt the world to himself. Therefore all progress depends on the unreasonable. - George Bernard Shaw

,o.

ftan~d~ =

12. f s e c ~ d x

=

-lnlcos=l,

Inlsecx + tanzl,

14. / arcsin ~dx = arcsin -~ + ~

57

11. /

cotzdx = lnlcos=l,

13. / csc z dx = In I cscz + cot

- x2,

a>O,

Theoretical

Computer

Science

Calculus

,:.

fa.~cos~d-:.r~.os~-V::.'-.',

Cheat

Cone

,6. fa.~,..~=:.arct.,,-~-~,.(a'-+.~-),

°>o,

t~nnzdz--

23.

22-/cos"zdz=COS"-'zsinz-i-n-l/ cosn-2 x d z .

sin"-'zc°sz+n-I/sin"-'zdz, n

-

~

-~-~_~ -

~0/.~..~=,~.-o- ,~ .-2/ n--1

-

11

ta~-~zdz, +

"

.>0.

18. f cos2(az)dz---- -~:(az + sin(az) cos(a,)).

17. /sin2(az)dz = ~-:a(az- sin(az) cos(az)),

21. / s i n " z d z - -

Sheet

n =if=1,

24.

sec n-~zdz,

c°tnzdz-

n-

1

cotn-~zdz,

n ~ 1.

n~l,

rt--1

,,../~.o..~.:

oo,.o.o.-,. n -- 1

+

/

°-_, -

-

n

cscn-2~:dz,

n ~- 1

27.

/

lJ

sinhzdz

= coshz,

28.

/

coshzdz

= sinhz.

,,/,~,.~.=,°oo.,.,,o joo,,~,. ,o .in,.,,,/..o,.~=...~.o.,°,.= /o~o,.~=,.,.°~0 :z,

38. / arccosh ~dz _

34.

cosh2 ~dz = ¼ sinh(2z) + :z,

35.

sech2 z dx = tanhz,

Z--~+a2 ' ifarccosh~>O a n d a > O , za z a x c c o s h - + ~ / z 2 + a 2, ifarccosh~ < 0 a n d a > O ,

{zarccosh ( ) a

39.

/

~ ~4f~..~_.~=In z + ~

40. / a~ dz + == -- ~I ~¢tan-~, 42. f ( a ~--- ~ ) ~ n d ~

43. 46. 48.

J

= f(S. ~ -- 2~)V/~.~ - ~ + @

~ a 2 -4- z 2 d z = ~ ~

z 2 4- ~ I n z + ~

~

~

:

11~

- In

a

!

~, d= = -~(2-2 - , , ' ) ~ / a '

.dz

~v,~

a - - ~"

I

,

,

45.

47. 49.

51.

/

(a 2

~

x/z2 _ a 2 -

/

~ + ~V~-~-~ ,

dz =

s3.

a-~x/~

'nl'+ ~~-~1

zVr~'-+bz dz

4~ + b=

_ z2)_~/2

-~ In

:

°>°

2(3bz - 2a)(a + 15 b-~

,

¥~+

_ x ~-

b~) a/~:

a > O,

z~/~'-='d==-}(~---~-j

-,

z

- ~' + ~ ,,csi~, -~,

a > O.

55.

.7. f

__~/~.~_.2,

58./~dz=v~a~_i_za_alna+~l 60.

1 In a~ d_z z 2 - -- 2a

dz = 2Vfa"T bz + a

='~~

a ~> O.

. > O,

,

d==v~-~-~.-~1~

f

44.

a~c.i. ~,

I

Z

.~e.

41. / ~/a= -- ~ a~ = -~/a= - ~" + :~= arcsin ~-,

a > O,

a ~ 0,

az 2 + bz

s4.

a>O,

dz - - a x c s i n ~-, ~ - z2

/ ~

5"0.

,

.~d.~=

4::_

59. f ~ - a =

,

± a , d , = ~ ( ~ ' +.,2)~/~-.

6t.

5 8

4 " ~ - ~'

-

'

- - - ~ X / a 2 -- ~ + :., ~ c s i n ~

. > 0,

d~ = x / ~ ~ - a" - a ~ccos l~I'

a > O,

/

~,/::+,,

:

"HI .

, +

Theoretical C o m p u t e r

Science C h e a t S h e e t

Calculus Cont.

62.

f

dz ZV/-~ __ a z

1

~ arccos ~ [ ,

~ zdz

64.

0,

a >

Finite Calculus

63.

V/~z~+ a 2 , .

65.

f

In 2a2 + b -

~

2az + b + ~

66.

az 2

+

bz

~

a ~ -- ~ a2--------~-- ,

-

2

+ c

dx

b~V"~"L-'~4ac c-

' if

~

b2

axctaa ~

2as + b ,

if b 2

= { -~a ln ]2az + b + 2 V ~ / a z ~ + b2 + c '

/ %lax~ Jr bz -I-

(Z 2 -I- a2) -a/2

dz=q:

,

>4at,

fCz) = / ' F ( z ) ~ ~

J'Cz)6z = r ( z ) + C.

b

~vq-~- b~

67.

z2%/~

Difference, shift operators: a f ( z ) ----f ( z -I- 1) -- f(m). Z f(z) ----f ( z -I-i). Fundamental Theorem: b-1

< 4ac,

i f a > 0,

|

Differences: ~(c,.O = ~ ' ~ ,

a

~(~ + ~) = ± . + ~.,,,

A(uv) = u A v + E v A u , 1

c

. -2as - b arcsln ~ %/b 2 - - 4ac

x/-a

i r a < 0,

A(~"--) = n ~ -1, , x ( n ~ ) = ~-1

68. / ~/az2 + bz + cdz - 2az + b~/az 2

4"------'~

4ax - ba / dz Jr bz + c "l- -8; ~/az~ Jr bz Jr c'

"x(2":) = 2".

ACez) = (c - 1)e =,

A(~) =

(roSs)-

Sums:

z dz ~/az ~ + bz + c x/az 2 + bz + c = a

69.

TO.

/

dz

E CU~. = C E U ~ 2 ,

E ( u + v) 6~ = E u 6. + E ~ 6,.

~-1 In 2v/EV'az~ + bz_z+ c + bz + 2c ,

z ~ / a z 2 + bz + c

rl. /.s~

b f dz 2a J "Vaz ~ + bz + c I

EZn6

bz + 2c ar~in i~l~Z=_~_~_ ~ ,

1

uAv 6z = uv - ~_, E vAu 6z.

i f e > 0,

z =

i r e < 0,

z.+l m+l,

e--l' • "-= z(z-

f=.-1cos(.~) d.,

"~

.n--le "

75. f z . ln(az)dz=z.+lfln(az) \n+l

7s.

,"(ln,,~) ~ d, = .

+ l(ln"') '~

1 ) ( n + l ) z' '

z[

Z2 :

Z~ + Z !

:

z ~ _ zT

zs =

z ~ + 3 z ~ + z!

=

z • _ 3z ~ + z T

z4 =

z ! + 6 z ~ + 7 z ~ + z!

=

24 _ 6 z ~ + 7z ~ _ z T

zs =

z~+ 15z~+ 25z~+ 10z~+ z!

=

z £ - 15z ~ + 25z ~ - l o s 2 + z [

Z!

),

z(z+l)---Cz+rn-1),

z°=

i,

zI

:

z~ :

z2 + z I

¢~ =

z~ =

z s + 3Z 2 + 2 z I

z~ =

zT=

z 4 + 6 z s + 11z 2 + 6z I

z!=

z 4 _ 6zs + I 1 2 2 - 6zI

z~ =

z s + l O z 4 + 3 5 z s + 50z ~ + 24z*

zE =

z s _ 1024 + 35z s - 50z 2 + 24z z

z 2 -- z I zs

n>O.

(2-

_

59

3z 2 + 2z I

1)-..(z-In[)

n0,

1

. . ( l ~ a 2 ) ~ - ~ d~.

=

Z I

rn + 1).

z"

-

Z!

:

1)-.-(.I

Z1 =

Z~

= War.

E (z) 62 = (re+l)"

• "--=(.+1)...(.+1.1 z " + ~ = zw_(z _ m)"-. Kising Factorial Powers:

dz,

~

~,Z

z°-= i,

73. /znc°s(az) dz= lZznsin(az)-ha/zn-lsin(az)d2' II

-1

Falling Factorial Powers:

+ a~ d. = (1~, _ A # ) ( . ~ + .~)s/L

rz. / . " sin(.=)d. = - ~ . ' ~ c o s ( - ~ ) + ~

E2~

'

n (.).

Expansions: 1 1--z

=

A(~)

i=o

1

=

£

1 + CZ + C2X 2 "~ C3Z 3 "Jr - • •

1 ~ Cg

~

a i ~~; -

i=0

Ci Z i

D i r i c h l e t p o w e r series:

~=0

1

:l+z

n+z

A(~) = 2.~ 7a i;

2,'+z an+-'-

1 - z"

(1 -

E x p o n e n t i a l p o w e r series:

= ~Zil

1 --~ Z -~- X2 + Z 3 --~ X4 --~ - - -

a;~'

I

i=0

= z+2z

z) 2

= £

2+3z a+4z 4+-'"

1

Binomial theorem: izi,

i=o

.,r_ ( 1 )

OD

= z+2nz

k=O

~---~ - ~ i n z i '

2 + 3riz 3 + 4 n z 4 + ' ' "

dz n

Difference o f like p o w e r s :

ff=O

= l+z+



{z2+

n--1

~Z'~ + . . . . k=O

i=0

2)

In(1 +

=z--~z

2

1 3 + ~z -- ~1 z 4 . . . .

=

~,A(~) + ~B(~) = ~ ( ~ - ~ + pb,)~ ~

1

ln--

1

F o r o r d i n a r y p o w e r series:

=x+~'+

+~z

+-.-

=

1--z

i=1

=z-~~+~z

sin z

5-~-

+

£( _1)i

....

i=o

=l-~z

C O S ~C

1

2

I

4

+T,z

1

6

= x - - ~ - z1

(1 + z)" 1

(1

-

~)n-I-1

~-~.(1--

+ ~ iz

5

-- 1 Z 7 + ' - "

=

k-x fliXz

Ei=0

= 1 + n z + ~(~2-~L~z2 + - - -

=

= l+(n+l)x+

=

("+")z'~ + ---

.

.

A(cz) = ~ om

zA'(z) = £ x,

= l+z+2z

2+5z a+---

iaix i. -

i=1

{2i'~

1

+ 1)ai+lX i

i=1

Biz i i! '



c'aix i.

i=0

) i

.

Oi--kZJ "

" "

Z2i+I

£(i+

i=O

4z)

= i=O

(~7¥i1'

(-)



Qgk

A'(z) = ~(i

= l -- l z + l z U -- ~-~z'l- t- .

qT-

A(x) - -

i=O

e~ - 1 1

3

"

1 i

°,'-A-xi,

i----0

(-1) (~,,

= i--=O

t a b l 1 - 1 ~g

(2i + 1)!'

- i Z:2i

--~.,x +..-

z~A(z) = ~

~2i+1

,

A(z) + A(-z) 2

----

£

i

z',

a2iz2i'

i=o

A(~)

=.: t , i ) "

= l+z+2zz+6za+...

V ~ ' - 4z

-

2

A(-~) = £

a21+lz2i+l"

i=O

= 1 + (2 + n ) x + ( 4 V ) ~ + " " 1 m l--z -1( 2

In

1 l--z -

= ~ + ~ z 2 + ~ ~ + ~ * 25 - 4 +

-

l n ~1 )

....

=

i=0

~

i

= i~+~3+~.

1 1 _ 4 -~-

. . . .

2

1 - (F.-1 + F.+l)x - (-1)nz 2

.

i

i=O

£ F . i ~ i. i=D

6O

J

A(~)B(~)=

ajbi_j

)

~'.

Fiz i,

= z + z 2 + 2z -~ + 3 z 4 + . . . .

= F . z + F~..z ~-+ F ~ . z a + . . . .

S u m m a t i o n : If bi = ~ ' ~ = 0 ai t h e n

Convolution:

i=1

~

!

1 B ( z ) -- 1 -- z "A(z)"

Hiz i,

i=2

1-z-z

~.i

God made the natural numbers: all t h e r e s t is t h e w o r k o f m a n . - Leopold Kronecker

T h e o r e t i c a l C o m p u t e r Science C h e a t Sheet Series Expansions: 1 1 In m (1 - z ) - + l I- z

z',

(e~ - 1)"

=

~-~,

~cot=

=

"----

i!

5

r, .~. ,

,

i=0

~ ( _ 1 ) ~ _ 122i(22i =

-

1)B2iz 2i-1 (2i)[ ,

£ ((z)

=

i=1

¢(=)

n i=0

:

tan -~

)

m

i=

(ln _1 - - ~ ) "

Escher's Knot

!

1 i-~,

i=1

=

.

,

-

i=1

~(Z)

__

,

i=1

1

¢(=1

Stieltjes Integration

:IIl_p-., P

¢2(z )

If G is continuous in the interval [a, b] and F is nondecreasing then

= £

d(i).

where dCn) = ~"]~dl,',1,

S(i).

where S(n) = E d l . d,

b G(z) dR(z)

i=1

¢'(x)¢(x - 1)

= £

Zt

exists. If a < b < c then

i=1

((2n)

--

sin~

=

G(z) dF(z) =

22"-11B2.1 r2., (2n)!

n • 1~,

G(z) dF(z) +

If the integrals involved exist b

(_1),_~

(4' -

i=o

2x

,I

e~ sin z

'

/

i[(n + ~)'l)[z~'. 2il2

(arc~n x.] -~

b G(=) d ( F ( z ) + H(z)) = c- G(z) d F ( z )

'"

sin "T zi,

/

~=o 16iv/'2(2i)!( 2i + 1) !x''

G(z) dF(z) +

a2,1a~l 4- a 2 , 2 z 2

-..

+

4- a 2 , n z n

:

b2

b

2

63 4

59 96 81 33

68 74

= b.

Let A = (aij) and B be the column maLrix (bi). Then there is a unique solution iff det A" # 0. Let Ai be A with column i replaced by B. Then det A~ 3: i = det A " Improvement makes strait roads, but the crooked roads without Improvement, are roads of Genius. - William Blake (The Marriage of Heaven and Hell.)

F ( z ) dV(z).

b

95 fl(] 22 67' 38 71 49 56 13

7 4 8 72 60 24 15

73 69 90 S2 44 17 5g

4- a n , 2 z 2 + " " " "~- a n , n Z n

G(z) dF(x).

If the integrals involved exist, and F possesses a derivative F" at every point in [a, b] then

86 11 57 28 7'0 39 94 45

• . . 4- a l . , n z n - : b 1

G(z) dH(.r).

b

0 4? 18 7'6 29 93 85 34 61 52

a 1 , 1 ~ 1 -[- a l , 2 Z 2 +

//

G(z) d(c- F ( z ) ) = c

V ( z ) dF(:r) = G(b)F(b) - G(a)F(a) - /

=~-~ 4ii[2 . ~=o ( i + 1)(2i + 1)[ z2'"

Crammer's Rule If we have equations:

an,lZl

b

b i=1

z

b

~'

(20!

= "= =

2)B2,~

G(x) dF(x).

37

8

9 75

91 B3 55 27

19 92 84 66 23

14 25 36 40 g l

82

21 32 43 54 65

6

42 53 64

1 35 26 12" 46

3

30

I, i, 2, 3, 5,8, 13, 21, 34, 55, 89 . . . . Definitions:

Fi = Fi_ t + Fi_ 2 ,

Fo = FI = 1:

F-i = (-1)/:IF.

50 41

77 88 99

10 89 97 7g

5 16 20 31 98 79 87

The Fibonacci number system: Every integer n has a unique representation n = Fkx + F~2 + . - . + F~,~, where ki > ki+l + 2 for all i, 1 < i < m and km >_2. 61

Fibonacci Numbers

Cassini's identity: for i > 0: F , + l F , - 1 - F? = ( - 1 ) ' .

Additive rule: F.+~ = FkF.+I + Fk-IF., F2. = F . F . + I + F,.-1F.. • Calculation by matrices:

~F._l.

F. ) = 0 1