Analyzing the Effects of Distance on Student Attendance Rates ...

Report 13 Downloads 18 Views
ANALYZING THE EFFECTS OF  DISTANCE ON STUDENT  ATTENDANCE RATES USING A GIS‐ BASED METHOD Taylor Krieger, MPP Office of Accountability School District of Philadelphia

Attendance in Philadelphia schools is  one of the lowest nationwide • The average high school student attends  class only 84% of the time. – This result in nearly 29 days worth of absence. • State test scores are 15‐20% less for chronically  absent students 

• Factors affecting attendance – Parents views on education – Performance – Distance??

Philadelphia School Action Plans • Plan of best practices • Used to address school level problems of  crime and safety, academic performance,  and attendance. • Created by principals and staff of every  school • Presented to central administrators for  comments

Does distance affect Average Daily  Attendance (ADA)? • Anecdotal evidence “My students miss class because they live far away.”

• Previously done studies – Focus on general attendance in short‐term public  health programs – Do not focus on students – Do not consider school attendance

Distance did not affect attendance to these programs

Current attendance‐improvement  policies target trans pass students • Subsidized public transportation – Substitute for a district level bus  system – ≥1.5 mile eligibility

• Public service announcements (TV,  radio, billboards) – Substantial presence of PSAs in public  transportation – High costs in marketing funds and  administrative hours • Could this be put to better use?

How effective are these policies? Are new policies necessary?

USING GIS… IS THERE A SPATIAL RELATIONSHIP BETWEEN DISTANCE  AND ATTENDANCE?

Methods • Buffer definition ƒ Radial distance of .5  miles ƒ ≥10.5 miles defined as  one buffer

• Students flagged  based on intersection  with buffer • Additional flags given  for each buffer  intersected

Flagging  Students by  Buffer  Intersection • Distance group  ƒ |Sum of flags – 20|

• Students grouped by  distance • Each group has ADA  weighted by total days  enrolled

One‐Half Mile Buffer Intervals by School

Example Script

Philadelphia Public High Schools • Neighborhood High  Schools – General Admission by  catchment area – Default school

• Citywide Admissions – Some admissions Criteria – Often Career and  Technically Oriented – Lottery Based

• Magnet Schools – Special Admissions – Strict Criteria (students removed if   chronically absent)

Enrollment by Distance and School Type Percent of Whole All Students

School Type Neighborhood Special Admissions Citywide Admission

Enrollment 33,656 9,557 7,158

Enrollment by Distance and School Type Count of All Students

Neighborhood Student Counts ≤ 1.5 mles

> 1.5 miles

≤ 3 miles

> 3 miles

23288

10134

29460

3962

ADA by Distance and School Type For all Students

School Type Neighborhood Citywide Magnet

ADA Coefficient 0.026 0.020 0.022

ADA  Significance 0.000 0.089 0.035

Cases 33422 7158 9612

Looking at Other Cohorts Do at­risk groups show a  relationship between distance  and attendance?

Looking at Other Cohorts 6­year Cohort Dropout Rates by Ethnicity and Gender 60% 51% 50% 44%

43%

39%

40%

30%

43%

36%

36%

32%

30%

37%

36%

GIRLS

30%

29%

BOYS

25%

ALL

20%

20%

10%

0% African American

Asian

Latino

White

*Source: The African American and Latino Male Dropout Task Force Report, September 2 2010 

Other

Enrollment by Distance and School Type Percent of Whole Black Males Only

School Type Neighborhood Special Admissions Citywide Admission 

Enrollment 11059 1707 2455

Enrollment by Distance and School Type Percent of Whole Black Males Only

Neighborhood Student Counts ≤ 1.5  mles

> 1.5  miles

≤ 3 miles

> 3 miles

7530

3529

9621

1438

ADA by Distance and School Type Percent of Whole Black Males Only

School Type Neighborhood Citywide Magnet

ADA Coefficient ADA Significance .033 .000 .005 .800 .054 .026

Cases 11059 2455 1707

Enrollment by Distance and School Type Percent of Whole Latino Males Only

School Type Neighborhood Special Admissions Citywide Admission 

Enrollment 3182 500 302

ADA by Distance and School Type Percent of Whole Latino Males Only

School Type Neighborhood Citywide Magnet

ADA Coefficient ADA Significance .029 .108 .003 .951 .104 .072

Cases 3182 500 302

Summary • Distance appears to have no relationship  with attendance rates  – Zero effect for all cohorts

• Attendance for Citywide schools higher  overall despite distance • Is increased distance illustrative of  increased preference?

2009 Transit Strike Absence comparisons

• Remember: Students beyond 1.5 miles are  eligible for subsidized public transportation  • November 2009 Septa strike – Three day disruption in all public  transportation

• Also occurred 2005 – Five days disruption

2009 Transit Strike Absence comparisons REGION 26‐Oct  (Monday)

Out of Buffer Students Absences PERCENT Neighborhood All Other

In Buffer Student Absences PERCENT Neighborhood All Other

28.9%

19.5%

33.9%

25.3%

27‐Oct

33.6%

18.8%

35.3%

24.1%

28‐Oct

33.6%

19.1%

36.3%

25.0%

29‐Oct

31.2%

17.9%

32.1%

23.1%

30‐Oct

33.7%

18.7%

37.6%

26.2%

29.8%

17.0%

31.7%

20.0%

31.8%

18.5%

34.5%

24.0%

4‐Nov

42.4%

30.2%

30.2%

19.5%

5‐Nov

38.1%

27.5%

29.8%

19.3%

6‐Nov

35.7%

22.4%

27.1%

14.0%

2‐Nov  (Monday) Pre‐Strike  Average

Conclusions • Distance should not be a determinant in matching  students to schools – Goodness of fit will likely have more of an effect

• Human and financial resources should be directed  towards other means of truancy reduction – Increased support for 8th grade counselors would help  students find a school best suited for their needs. – Virtually all Latino males are enrolled in neighborhood  schools, enrollment in a “better fit” could increase  attendance  and performance

• GIS not just about showing spatial relationships, but also  showing where they do not exist despite popular  thought

Future Work Distance, no… …time, yes?

ANY QUESTIONS?