Approximating ATSP by Relaxing Connectivity

Report 2 Downloads 84 Views
Approximating ATSP by Relaxing Connectivity Ola Svensson

Motivation of Asymmetric TSP

vs

Asymmetric Traveling Salesman Problem INPUT: an edge-weighted digraph 𝐺=(𝑉,𝐸,𝑤) OUTPUT: a tour of minimum weight that visits each vertex at least once

Asymmetric Traveling Salesman Problem INPUT: an edge-weighted digraph 𝐺=(𝑉,𝐸,𝑤) OUTPUT: a tour of minimum weight that visits each vertex at least once

3 1 5000 1

Asymmetric Traveling Salesman Problem INPUT: an edge-weighted digraph 𝐺=(𝑉,𝐸,𝑤) OUTPUT: a minimum weight connected Eulerian multigraph (𝑉,​𝐸↑′ ) in-degree = out-degree

3 1 5000 1

Asymmetric Traveling Salesman Problem INPUT: an edge-weighted digraph 𝐺=(𝑉,𝐸,𝑤) OUTPUT: a minimum weight connected Eulerian multigraph (𝑉,​𝐸↑′ ) Variables:

​𝑥↓𝑢𝑣  = #times we traverse arc (𝑢,𝑣) Held-Karp Relaxation

Minimize: 𝑥↓𝑢𝑣 

∑𝑢𝑣∈𝐸↑▒𝑤(𝑢,𝑣) ​

Subject to:

𝒙(​𝜹↑+ (𝒗))=𝒙(​𝜹↑− (𝒗))

for all 𝑣∈𝑉  

𝒙(​𝜹↑+ (𝑺))≥𝟏

for all S⊂𝑉  

𝑥≥0

Two Approaches Easy to Find Eulerian graph

Easy to Find Connected Graph

Held-Karp Relaxation

Minimize: 𝑥↓𝑢𝑣 

∑𝑢𝑣∈𝐸↑▒𝑤(𝑢,𝑣) ​

Subject to:

𝒙(​𝜹↑+ (𝒗))=𝒙(​𝜹↑− (𝒗))

for all 𝑣∈𝑉  

𝒙(​𝜹↑+ (𝑺))≥𝟏

for all S⊂𝑉  

𝑥≥0

Find min-cost cycle cover

Repeated Cycle Cover

“Contract“ Repeat until graph is connected

Find min-cost cycle cover

Repeated Cycle Cover

“Contract“ Repeat until graph is connected

Find min-cost cycle cover

Repeated Cycle Cover

“Contract“ Repeat until graph is connected

Find min-cost cycle cover

Repeated Cycle Cover

“Contract“ Repeat until graph is connected

Find min-cost cycle cover

Repeated Cycle Cover

“Contract“ Repeat until graph is connected

Find min-cost cycle cover

Repeated Cycle Cover

“Contract“ Repeat until graph is connected

Find min-cost cycle cover

Repeated Cycle Cover

“Contract“ Repeat until graph is connected

Worst case: all cycles have length 2 so we need to repeat ​log↓2 ⁠𝑛  times (each time cost 𝑂𝑃​𝑇↓𝐿

Two Approaches Easy to Find Eulerian graph Repeatedly find cycle-covers to get ​ log↓2 ⁠𝑛 -approximation [Frieze, Galbiati, Maffiolo’82]

0.99​log↓2 ⁠𝑛 -approximation [Bläser’03]

0.84​log↓2 ⁠𝑛 -approximation [Kaplan, Lewenstein, Shafrir, Sviridenko’05]

Easy to Find Connected Graph

Thin Tree Approach

Find (undirected) spanning tree Obtain Eulerian graph via a circulation that sends one unit through each tree edge

Cost of LP ≈𝟏 red edge







𝑘  vertices



Thin Tree Approach

Find (undirected) spanning tree Obtain Eulerian graph via a circulation that sends one unit through each tree edge

Cost of LP ≈𝟏 red edge







𝑘  vertices



Thin Tree Approach

Find (undirected) spanning tree Obtain Eulerian graph via a circulation that sends one unit through each tree edge

Cost of LP ≈𝟏 red edge







𝑘  vertices



Thin Tree Approach

Find (undirected) spanning tree Obtain Eulerian graph via a circulation that sends one unit through each tree edge

⇒ find a “thin” tree for each cut it has not many more edges than the LP predicts Cost of LP ≈𝟏 red edge









𝑘  vertices

Cost of c𝐢𝐫𝐜𝐮𝐥𝐚𝐭𝐢𝐨𝐧≥𝟑 red edges

Two Approaches Easy to Find Eulerian graph

Easy to Find Connected Graph

Repeatedly find cycle-covers to get ​ log↓2 ⁠𝑛 -approximation

𝑂(​log⁠𝑛 /​log⁠​log⁠𝑛)  -approximation

[Asadpour, Goemans, Madry, Oveis Gharan, Saberi’10]

[Frieze, Galbiati, Maffiolo’82]

𝑂(1)-approximation for planar and bounded genus graphs

0.99​log↓2 ⁠𝑛 -approximation

[Oveis Gharan, Saberi’11]

[Bläser’03]

0.84​log↓2 ⁠𝑛 -approximation [Kaplan, Lewenstein, Shafrir, Sviridenko’05]

O(𝑝𝑜𝑙𝑦  𝑙𝑜𝑔​log⁠𝑛)   bound on integrality gap (exact formulation for sparsest cut and generalization of Kadison-Singer) [Anari, Oveis Gharan’14]

To summarize Best approximation algorithm: 𝑂(​log⁠𝑛 /​log⁠​log⁠𝑛   ) Best upper bound on integrality gap: 𝑂(𝑝𝑜𝑙𝑦​log⁠​log⁠𝑛)   Best lower bound on integrality gap: 2 This is believed to be close to the truth

No better guarantees for shortest path metrics on unweighted graphs for which there was recent improvements for the symmetric TSP •  Main difficulty in cycle cover approach is to bound #iterations •  In thin-tree approach we reduce ATSP to an unweighted problem

A NEW APPROACH

Application of approach THEOREM:

For ATSP on node-weighted graphs, the integrality gap is at most 15. Moreover, there is a 27-approximation algorithm.

Exist 𝑓:𝑉→​𝑅↑+  s.t

𝑤(𝑢,𝑣)  =  𝑓(𝑢) for all (𝑢,𝑣)∈𝐸

2 5 1

5 5

1

Application of approach THEOREM:

For ATSP on node-weighted graphs, the integrality gap is at most 15. Moreover, there is a 27-approximation algorithm.

Exist 𝑓:𝑉→​𝑅↑+  s.t

𝑤(𝑢,𝑣)  =  𝑓(𝑢) for all (𝑢,𝑣)∈𝐸

2 5 1

5 5

Value = 2+5+1+5+1=14

1

Chicago

Lausanne Boston

Puerto Rico

General Metric w.l.o.g. exist laminar family such that for each edge 𝑒 𝑤(𝑒)=  ∑𝑆:  𝑒∈𝛿(𝑆)↑▒​𝑦↓𝑆  

1

2

4 10

3

Do better than 1.5 for symmetric TSP on node-weighted metrics?

Cousin to repeated cycle cover approach Distant relative to thin tree approach

OUR APPROACH

Relaxing Connectivity

Instead of

𝒙(​𝜹↑+ (𝒗))=𝒙(​𝜹↑− (𝒗))

for all 𝑣∈𝑉  

𝒙(​𝜹↑+ (𝑺))≥𝟏

for all 𝐒⊂𝑽  

𝑥≥0

Do for smart C

𝒙(​𝜹↑+ (𝒗))=𝒙(​𝜹↑− (𝒗))

for all 𝑣∈𝑉  

𝒙(​𝜹↑+ (𝑺))≥𝟏

for those 𝐒∈𝑪  

𝑥≥0

Local Connectivity ATSP INPUT: an edge-weighted digraph 𝐺=(𝑉,𝐸,𝑤), a partition ​𝑉↓1 ∪…∪​𝑉↓𝑘  of 𝑉

Local Connectivity ATSP INPUT: an edge-weighted digraph 𝐺=(𝑉,𝐸,𝑤), a partition ​𝑉↓1 ∪…∪​𝑉↓𝑘  of 𝑉 OUTPUT: an Eulerian multisubset of edges 𝐹 such that each cut (​𝑉↓𝑖 ,  ​𝑉↓𝑖  ) is “covered” by 𝐹

Local Connectivity ATSP INPUT: an edge-weighted digraph 𝐺=(𝑉,𝐸,𝑤), a partition ​𝑉↓1 ∪…∪​𝑉↓𝑘  of 𝑉 OUTPUT: an Eulerian multisubset of edges 𝐹 such that each cut (​𝑉↓𝑖 ,  ​𝑉↓𝑖  ) is “covered” by 𝐹

Local Connectivity ATSP An algorithm is 𝜶-light if it always outputs a solution 𝐹 s.t. for each component (𝑽’,  𝑭’) in (𝑽,  𝑭), ​𝒘(​𝑭↑′ )/𝒍𝒃(​𝑽↑′ ) ≤𝜶, where 𝑙𝑏(𝑣)=∑𝑒∈​𝛿↑+ (𝑣)↑▒​𝑥↓𝑒↑∗  𝑤(𝑒) and ​𝑥↑∗  is optimal solution to LP Note: designing an 𝜶-light algorithm is “easier” than an 𝜶-approximation for ATSP

​6/5 

1

Our main technical result THEOREM:

If there is an 𝛼-light algorithm A for Local-Connectivity ATSP then the integrality gap for ATSP is at most 5𝛼.

Our main technical result THEOREM:

If there is an 𝛼-light algorithm A for Local-Connectivity ATSP then the integrality gap for ATSP is at most 5𝛼. Moreover, a 9𝛼-approximate tour can be found in polynomial time if A runs in polynomial time.

The problems are equivalent up to a small constant factor There is an easy 3-light algorithm for node-weighted metric (only part where special metric is used)

OUR “TURING” REDUCTION

Initialization

Partition vertices of 𝐺 into Eulerian graphs ​𝐻↓1↑∗ =(​𝑉↓1↑∗ ,  ​

𝐸↓1↑∗ ),  …,  ​𝐻↓𝑘↑∗ =(​𝑉↓𝑘↑∗ ,  ​𝐸↓𝑘↑∗ ) s.t.

1.  ​𝐻↓𝑖↑∗  is 2𝛼-light, i.e., ​𝑤(​𝐸↓𝑖↑∗ )/𝑙𝑏(​𝑉↓𝑖↑∗ )  2. 

The lexicographic order of is maximized

​𝐻↓2↑∗ 

​𝐻↓1↑∗ 

​𝐻↓3↑∗ 

​ 𝐻↓ 4↑ ∗ 

​ 𝐻 ↓ 5 ↑ ∗ 

​ 𝐻 ↓ 6 ↑ ∗ 

​ 𝐻 ↓ 7 ↑ ∗ 

Initialization

Partition vertices of 𝐺 into Eulerian graphs ​𝐻↓1↑∗ =(​𝑉↓1↑∗ ,  ​

𝐸↓1↑∗ ),  …,  ​𝐻↓𝑘↑∗ =(​𝑉↓𝑘↑∗ ,  ​𝐸↓𝑘↑∗ ) s.t.

1.  ​𝐻↓𝑖↑∗  is 2𝛼-light, i.e., ​𝑤(​𝐸↓𝑖↑∗ )/𝑙𝑏(​𝑉↓𝑖↑∗ )  2. 

The lexicographic order of :​𝑯is↓𝒊↑ ∗   𝒊𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒔  𝑯)   ↑∗    𝐻↓𝑘↑ ∗ ) maximized

​𝐻↓2↑∗ 

​𝐻↓1↑∗ 

​𝐻↓3↑∗ 

​ 𝐻↓ 4↑ ∗ 

​ 𝑙𝑜𝑤(𝐻)=​ ​𝐻↓2↑∗  𝐻 𝐻 ↓ ↓ 6 5 ↑ ↑ ∗  ∗ 

​ 𝐻 ↓ 7 ↑ ∗ 

Initialization

Partition vertices of 𝐺 into Eulerian graphs ​𝐻↓1↑∗ =(​𝑉↓1↑∗ ,  ​

𝐸↓1↑∗ ),  …,  ​𝐻↓𝑘↑∗ =(​𝑉↓𝑘↑∗ ,  ​𝐸↓𝑘↑∗ ) s.t.

1.  ​𝐻↓𝑖↑∗  is 2𝛼-light, i.e., ​𝑤(​𝐸↓𝑖↑∗ )/𝑙𝑏(​𝑉↓𝑖↑∗ )  2. 

The lexicographic order of :​𝑯is↓𝒊↑ ∗   𝒊𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒔  𝑯)   ↑∗    𝐻↓𝑘↑ ∗ ) maximized

​𝐻↓1↑∗  𝑙𝑜𝑤(𝐻)=​𝐻↓1↑∗ 

​𝐻↓3↑∗ 

​ 𝐻↓ 4↑ ∗ 

​𝐻↓2↑∗  ​ 𝐻 ↓ 5 ↑ ∗ 

​ 𝐻 ↓ 6 ↑ ∗ 

​ 𝐻 ↓ 7 ↑ ∗ 

Initialization

Partition vertices of 𝐺 into Eulerian graphs ​𝐻↓1↑∗ =(​𝑉↓1↑∗ ,  ​

𝐸↓1↑∗ ),  …,  ​𝐻↓𝑘↑∗ =(​𝑉↓𝑘↑∗ ,  ​𝐸↓𝑘↑∗ ) s.t.

1.  ​𝐻↓𝑖↑∗  is 2𝛼-light, i.e., ​𝑤(​𝐸↓𝑖↑∗ )/𝑙𝑏(​𝑉↓𝑖↑∗ )  2. 

The lexicographic order of :​𝑯is↓𝒊↑ ∗   𝒊𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒔  𝑯)   ↑∗    𝐻↓𝑘↑ ∗ ) maximized Claim 1: For any 2𝛼-light Eulerian subgraph 𝐻, we have 𝑙𝑏(𝐻)≤𝑙𝑏(𝑙𝑜𝑤(𝐻))

​𝐻↓2↑∗ 

​𝐻↓1↑∗ 

​𝐻↓3↑∗ 

​ 𝐻↓ 4↑ ∗ 

​ 𝐻 ↓ 5 ↑ ∗ 

​ 𝐻 ↓ 7 ↑ ∗  ​ 𝑙𝑜𝑤(𝐻)=​𝐻↓2↑∗  𝐻 ↓ 6 ↑ ∗ 

Initialization

Partition vertices of 𝐺 into Eulerian graphs ​𝐻↓1↑∗ =(​𝑉↓1↑∗ ,  ​

𝐸↓1↑∗ ),  …,  ​𝐻↓𝑘↑∗ =(​𝑉↓𝑘↑∗ ,  ​𝐸↓𝑘↑∗ ) s.t.

1.  ​𝐻↓𝑖↑∗  is 2𝛼-light, i.e., ​𝑤(​𝐸↓𝑖↑∗ )/𝑙𝑏(​𝑉↓𝑖↑∗ )  2. 

The lexicographic order of :​𝑯is↓𝒊↑ ∗   𝒊𝒏𝒕𝒆𝒓𝒔𝒆𝒄𝒕𝒔  𝑯)   ↑∗    𝐻↓𝑘↑ ∗ ) maximized Claim 1: For any 2𝛼-light Eulerian subgraph 𝐻, we have 𝑙𝑏(𝐻)≤𝑙𝑏(𝑙𝑜𝑤(𝐻))

Claim 1I: For any 𝛼-light vertex-disjoint Eulerian subgraphs ​𝐻↓1 ,  ​𝐻↓2 ,  …,  ​𝐻↓𝑙 , such that 𝑙𝑜𝑤(​𝐻↓𝑗 )=​𝐻↓𝑖↑∗   we have ∑𝑗=1↑𝑙▒𝑙𝑏(​𝐻↓𝑗 ) ≤2𝑙𝑏(​𝐻↓𝑖↑∗ )

​𝐻↓2↑∗ 

​𝐻↓1↑∗ 

​𝐻↓3↑∗ 

​ 𝐻↓ 4↑ ∗ 

​ 𝐻 ↓ 5 ↑ ∗ 

​ 𝐻 ↓ 7 ↑ ∗  ​ 𝑙𝑜𝑤(​𝐻↓𝑗 )=​𝐻↓2↑∗  𝐻 ↓ 6 ↑ ∗ 

Merging

​ 𝐻↓9 ↑∗ 

Use 𝛼-light algorithm for LC-ATSP to find F w.r.t. current components

​𝐻↓1↑∗  ​ 𝐻 ↓1 0↑ ∗  ​𝐻↓3↑∗  ​ 𝐻↓4↑ ∗ 

​ 𝐻↓5↑ ∗ 

​𝐻↓6​ ↑∗  𝐻 ↓ 1 1 ↑ ∗ 

​𝐻↓2↑∗ 

​𝐻↓7↑∗ 

​ 𝐻↓8↑ ∗ 

Merging

​ 𝐻↓9 ↑∗ 

Use 𝛼-light algorithm for LC-ATSP to find F w.r.t. current components

​𝐻↓1↑∗  ​ 𝐻 ↓1 0↑ ∗  ​𝐻↓3↑∗  ​ 𝐻↓4↑ ∗ 

​ 𝐻↓5↑ ∗ 

​𝐻↓6​ ↑∗  𝐻 ↓ 1 1 ↑ ∗ 

​𝐻↓2↑∗ 

​𝐻↓7↑∗ 

​ 𝐻↓8↑ ∗ 

Merging

​ 𝐻↓9 ↑∗ 

Use 𝛼-light algorithm for LC-ATSP to find F w.r.t. current components (*) Select component 𝐻 with smallest 𝑙𝑏(𝑙𝑜𝑤(𝐻))

​𝐻↓1↑∗  ​ 𝐻 ↓1 0↑ ∗  ​𝐻↓3↑∗  ​ 𝐻↓4↑ ∗ 

​ 𝐻↓5↑ ∗ 

​𝐻↓6​ ↑∗  𝐻 ↓ 1 1 ↑ ∗ 

​𝐻↓2↑∗ 

​𝐻↓7↑∗ 

​ 𝐻↓8↑ ∗ 

Merging

Use 𝛼-light algorithm for LC-ATSP to find F w.r.t. current components (*) Select component 𝐻 with smallest 𝑙𝑏(𝑙𝑜𝑤(𝐻)) If exist cycle 𝐶 that connects 𝐻 to another component and

𝑤(𝐶)≤𝛼𝑙𝑏(𝑙𝑜𝑤(𝐻))

​ 𝐻↓9 ↑∗ 

​𝐻↓1↑∗  ​ 𝐻 ↓1 0↑ ∗  ​𝐻↓3↑∗  ​ 𝐻↓4↑ ∗ 

temporarily add it and repeat from (*)

​ 𝐻↓5↑ ∗ 

​𝐻↓6​ ↑∗  𝐻 ↓ 1 1 ↑ ∗ 

​𝐻↓2↑∗ 

​𝐻↓7↑∗ 

​ 𝐻↓8↑ ∗ 

Merging

Use 𝛼-light algorithm for LC-ATSP to find F w.r.t. current components (*) Select component 𝐻 with smallest 𝑙𝑏(𝑙𝑜𝑤(𝐻)) If exist cycle 𝐶 that connects 𝐻 to another component and

𝑤(𝐶)≤𝛼𝑙𝑏(𝑙𝑜𝑤(𝐻))

​ 𝐻↓9 ↑∗ 

​𝐻↓1↑∗  ​ 𝐻 ↓1 0↑ ∗ 

​𝐻↓3↑∗ 

temporarily add it and repeat from (*)

​ 𝐻↓5↑ ∗ 

​𝐻↓6​ ↑∗ 

​𝐻↓2↑∗ 

​𝐻↓7↑∗  𝐻 ↓ 1 ​ 1 ​ 𝐻↓4↑ ↑ 𝐻↓8↑ ∗  ∗  ∗  𝑤(𝐶)≤𝛼𝑙𝑏(​𝐻↓6↑∗ )

Merging

Use 𝛼-light algorithm for LC-ATSP to find F w.r.t. current components (*) Select component 𝐻 with smallest 𝑙𝑏(𝑙𝑜𝑤(𝐻)) If exist cycle 𝐶 that connects 𝐻 to another component and

𝑤(𝐶)≤𝛼𝑙𝑏(𝑙𝑜𝑤(𝐻))

​ 𝐻↓9 ↑∗ 

​𝐻↓1↑∗  ​ 𝐻 ↓1 0↑ ∗  ​𝐻↓3↑∗  ​ 𝐻↓4↑ ∗ 

temporarily add it and repeat from (*)

​ 𝐻↓5↑ ∗ 

​𝐻↓6​ ↑∗  𝐻 ↓ 1 1 ↑ ∗ 

​𝐻↓2↑∗ 

​𝐻↓7↑∗ 

​ 𝐻↓8↑ ∗ 

Merging

Use 𝛼-light algorithm for LC-ATSP to find F w.r.t. current components (*) Select component 𝐻 with smallest 𝑙𝑏(𝑙𝑜𝑤(𝐻)) If exist cycle 𝐶 that connects 𝐻 to another component and

𝑤(𝐶)≤𝛼𝑙𝑏(𝑙𝑜𝑤(𝐻))

temporarily add it and repeat from (*)

Otherwise add new edges belonging to this component

​ 𝐻↓9 ↑∗ 

​𝐻↓1↑∗  ​ 𝐻 ↓1 0↑ ∗  ​𝐻↓3↑∗  ​ 𝐻↓4↑ ∗ 

​ 𝐻↓5↑ ∗ 

​𝐻↓6​ ↑∗  𝐻 ↓ 1 1 ↑ ∗ 

​𝐻↓2↑∗ 

​𝐻↓7↑∗ 

​ 𝐻↓8↑ ∗ 

Merging

Use 𝛼-light algorithm for LC-ATSP to find F w.r.t. current components (*) Select component 𝐻 with smallest 𝑙𝑏(𝑙𝑜𝑤(𝐻)) If exist cycle 𝐶 that connects 𝐻 to another component and

𝑤(𝐶)≤𝛼𝑙𝑏(𝑙𝑜𝑤(𝐻))

temporarily add it and repeat from (*)

Otherwise add new edges belonging to this component

​ 𝐻↓9 ↑∗ 

​𝐻↓1↑∗  ​ 𝐻 ↓1 0↑ ∗  ​𝐻↓3↑∗  ​ 𝐻↓4↑ ∗ 

​ 𝐻↓5↑ ∗ 

​𝐻↓6​ ↑∗  𝐻 ↓ 1 1 ↑ ∗ 

​𝐻↓2↑∗ 

​𝐻↓7↑∗ 

​ 𝐻↓8↑ ∗ 

Merging

Use 𝛼-light algorithm for LC-ATSP to find F w.r.t. current components (*) Select component 𝐻 with smallest 𝑙𝑏(𝑙𝑜𝑤(𝐻)) If exist cycle 𝐶 that connects 𝐻 to another component and

𝑤(𝐶)≤𝛼𝑙𝑏(𝑙𝑜𝑤(𝐻))

temporarily add it and repeat from (*)

Otherwise add new edges belonging to this component

​ 𝐻↓9 ↑∗ 

​𝐻↓1↑∗  ​ 𝐻 ↓1 0↑ ∗  ​𝐻↓3↑∗  ​ 𝐻↓4↑ ∗ 

​ 𝐻↓5↑ ∗ 

​𝐻↓6​ ↑∗  𝐻 ↓ 1 1 ↑ ∗ 

​𝐻↓2↑∗ 

​𝐻↓7↑∗ 

​ 𝐻↓8↑ ∗ 

Merging

Use 𝛼-light algorithm for LC-ATSP to find F w.r.t. current components (*) Select component 𝐻 with smallest 𝑙𝑏(𝑙𝑜𝑤(𝐻)) If exist cycle 𝐶 that connects 𝐻 to another component and

𝑤(𝐶)≤𝛼𝑙𝑏(𝑙𝑜𝑤(𝐻))

temporarily add it and repeat from (*)

Otherwise add new edges belonging to this component

​ 𝐻↓9 ↑∗ 

​𝐻↓1↑∗  ​ 𝐻 ↓1 0↑ ∗  ​𝐻↓3↑∗  ​ 𝐻↓4↑ ∗ 

​ 𝐻↓5↑ ∗ 

​𝐻↓6​ ↑∗  𝐻 ↓ 1 1 ↑ ∗ 

​𝐻↓2↑∗ 

​𝐻↓7↑∗ 

​ 𝐻↓8↑ ∗ 

Merging

Use 𝛼-light algorithm for LC-ATSP to find F w.r.t. current components (*) Select component 𝐻 with smallest 𝑙𝑏(𝑙𝑜𝑤(𝐻)) If exist cycle 𝐶 that connects 𝐻 to another component and

𝑤(𝐶)≤𝛼𝑙𝑏(𝑙𝑜𝑤(𝐻))

temporarily add it and repeat from (*)

Otherwise add new edges belonging to this component

​ 𝐻↓9 ↑∗ 

​𝐻↓1↑∗  ​ 𝐻 ↓1 0↑ ∗  ​𝐻↓3↑∗  ​ 𝐻↓4↑ ∗ 

​ 𝐻↓5↑ ∗ 

​𝐻↓6​ ↑∗  𝐻 ↓ 1 1 ↑ ∗ 

​𝐻↓2↑∗ 

​𝐻↓7↑∗ 

​ 𝐻↓8↑ ∗ 

Merging

Use 𝛼-light algorithm for LC-ATSP to find F w.r.t. current components (*) Select component 𝐻 with smallest 𝑙𝑏(𝑙𝑜𝑤(𝐻)) If exist cycle 𝐶 that connects 𝐻 to another component and

𝑤(𝐶)≤𝛼𝑙𝑏(𝑙𝑜𝑤(𝐻))

temporarily add it and repeat from (*)

Otherwise add new edges belonging to this component

​ 𝐻↓9 ↑∗ 

​𝐻↓1↑∗  ​ 𝐻 ↓1 0↑ ∗  ​𝐻↓3↑∗  ​ 𝐻↓4↑ ∗ 

​ 𝐻↓5↑ ∗ 

​𝐻↓6​ ↑∗  𝐻 ↓ 1 1 ↑ ∗ 

​𝐻↓2↑∗ 

​𝐻↓7↑∗ 

​ 𝐻↓8↑ ∗ 

Merging

Use 𝛼-light algorithm for LC-ATSP to find F w.r.t. current components (*) Select component 𝐻 with smallest 𝑙𝑏(𝑙𝑜𝑤(𝐻)) If exist cycle 𝐶 that connects 𝐻 to another component and

𝑤(𝐶)≤𝛼𝑙𝑏(𝑙𝑜𝑤(𝐻))

temporarily add it and repeat from (*)

Otherwise add new edges belonging to this component

​ 𝐻↓9 ↑∗ 

​𝐻↓1↑∗  ​ 𝐻 ↓1 0↑ ∗  ​𝐻↓3↑∗  ​ 𝐻↓4↑ ∗ 

​ 𝐻↓5↑ ∗ 

​𝐻↓6​ ↑∗  𝐻 ↓ 1 1 ↑ ∗ 

​𝐻↓2↑∗ 

​𝐻↓7↑∗ 

​ 𝐻↓8↑ ∗ 

Merging

Use 𝛼-light algorithm for LC-ATSP to find F w.r.t. current components (*) Select component 𝐻 with smallest 𝑙𝑏(𝑙𝑜𝑤(𝐻)) If exist cycle 𝐶 that connects 𝐻 to another component and

𝑤(𝐶)≤𝛼𝑙𝑏(𝑙𝑜𝑤(𝐻))

temporarily add it and repeat from (*)

Otherwise add new edges belonging to this component

​ 𝐻↓9 ↑∗ 

​𝐻↓1↑∗  ​ 𝐻 ↓1 0↑ ∗  ​𝐻↓3↑∗  ​ 𝐻↓4↑ ∗ 

​ 𝐻↓5↑ ∗ 

​𝐻↓6​ ↑∗  𝐻 ↓ 1 1 ↑ ∗ 

​𝐻↓2↑∗ 

​𝐻↓7↑∗ 

​ 𝐻↓8↑ ∗ 

Merging

Use 𝛼-light algorithm for LC-ATSP to find F w.r.t. current components (*) Select component 𝐻 with smallest 𝑙𝑏(𝑙𝑜𝑤(𝐻)) If exist cycle 𝐶 that connects 𝐻 to another component and

𝑤(𝐶)≤𝛼𝑙𝑏(𝑙𝑜𝑤(𝐻))

temporarily add it and repeat from (*)

Otherwise add new edges belonging to this component

​ 𝐻↓9 ↑∗ 

​𝐻↓1↑∗  ​ 𝐻 ↓1 0↑ ∗  ​𝐻↓3↑∗  ​ 𝐻↓4↑ ∗ 

​ 𝐻↓5↑ ∗ 

​𝐻↓6​ ↑∗  𝐻 ↓ 1 1 ↑ ∗ 

​𝐻↓2↑∗ 

​𝐻↓7↑∗ 

​ 𝐻↓8↑ ∗ 

Merging

Use 𝛼-light algorithm for LC-ATSP to find F w.r.t. current components (*) Select component 𝐻 with smallest 𝑙𝑏(𝑙𝑜𝑤(𝐻)) If exist cycle 𝐶 that connects 𝐻 to another component and

𝑤(𝐶)≤𝛼𝑙𝑏(𝑙𝑜𝑤(𝐻))

temporarily add it and repeat from (*)

Otherwise add new edges belonging to this component

​ 𝐻↓9 ↑∗ 

​𝐻↓1↑∗  ​ 𝐻 ↓1 0↑ ∗  ​𝐻↓3↑∗  ​ 𝐻↓4↑ ∗ 

​ 𝐻↓5↑ ∗ 

​𝐻↓6​ ↑∗  𝐻 ↓ 1 1 ↑ ∗ 

​𝐻↓2↑∗ 

​𝐻↓7↑∗ 

​ 𝐻↓8↑ ∗ 

Merging

Use 𝛼-light algorithm for LC-ATSP to find F w.r.t. current components (*) Select component 𝐻 with smallest 𝑙𝑏(𝑙𝑜𝑤(𝐻)) If exist cycle 𝐶 that connects 𝐻 to another component and

𝑤(𝐶)≤𝛼𝑙𝑏(𝑙𝑜𝑤(𝐻))

temporarily add it and repeat from (*)

Otherwise add new edges belonging to this component

​ 𝐻↓9 ↑∗ 

​𝐻↓1↑∗  ​ 𝐻 ↓1 0↑ ∗  ​𝐻↓3↑∗  ​ 𝐻↓4↑ ∗ 

​ 𝐻↓5↑ ∗ 

​𝐻↓6​ ↑∗  𝐻 ↓ 1 1 ↑ ∗ 

​𝐻↓2↑∗ 

​𝐻↓7↑∗ 

​ 𝐻↓8↑ ∗ 

Merging

Use 𝛼-light algorithm for LC-ATSP to find F w.r.t. current components (*) Select component 𝐻 with smallest 𝑙𝑏(𝑙𝑜𝑤(𝐻)) If exist cycle 𝐶 that connects 𝐻 to another component and

𝑤(𝐶)≤𝛼𝑙𝑏(𝑙𝑜𝑤(𝐻))

temporarily add it and repeat from (*)

Otherwise add new edges belonging to this component

​ 𝐻↓9 ↑∗ 

​𝐻↓1↑∗  ​ 𝐻 ↓1 0↑ ∗  ​𝐻↓3↑∗  ​ 𝐻↓4↑ ∗ 

​ 𝐻↓5↑ ∗ 

​𝐻↓6​ ↑∗  𝐻 ↓ 1 1 ↑ ∗ 

​𝐻↓2↑∗ 

​𝐻↓7↑∗ 

​ 𝐻↓8↑ ∗ 

Merging

Use 𝛼-light algorithm for LC-ATSP to find F w.r.t. current components (*) Select component 𝐻 with smallest 𝑙𝑏(𝑙𝑜𝑤(𝐻)) If exist cycle 𝐶 that connects 𝐻 to another component and

𝑤(𝐶)≤𝛼𝑙𝑏(𝑙𝑜𝑤(𝐻))

temporarily add it and repeat from (*)

Otherwise add new edges belonging to this component

​ 𝐻↓9 ↑∗ 

​𝐻↓1↑∗  ​ 𝐻 ↓1 0↑ ∗  ​𝐻↓3↑∗  ​ 𝐻↓4↑ ∗ 

​ 𝐻↓5↑ ∗ 

​𝐻↓6​ ↑∗  𝐻 ↓ 1 1 ↑ ∗ 

​𝐻↓2↑∗ 

​𝐻↓7↑∗ 

​ 𝐻↓8↑ ∗ 

Merging

Use 𝛼-light algorithm for LC-ATSP to find F w.r.t. current components (*) Select component 𝐻 with smallest 𝑙𝑏(𝑙𝑜𝑤(𝐻)) If exist cycle 𝐶 that connects 𝐻 to another component and

𝑤(𝐶)≤𝛼𝑙𝑏(𝑙𝑜𝑤(𝐻))

temporarily add it and repeat from (*)

Otherwise add new edges belonging to this component

​ 𝐻↓9 ↑∗ 

​𝐻↓1↑∗  ​ 𝐻 ↓1 0↑ ∗  ​𝐻↓3↑∗  ​ 𝐻↓4↑ ∗ 

​ 𝐻↓5↑ ∗ 

​𝐻↓6​ ↑∗  𝐻 ↓ 1 1 ↑ ∗ 

​𝐻↓2↑∗ 

​𝐻↓7↑∗ 

​ 𝐻↓8↑ ∗ 

Merging

Use 𝛼-light algorithm for LC-ATSP to find F w.r.t. current components (*) Select component 𝐻 with smallest 𝑙𝑏(𝑙𝑜𝑤(𝐻)) If exist cycle 𝐶 that connects 𝐻 to another component and

𝑤(𝐶)≤𝛼𝑙𝑏(𝑙𝑜𝑤(𝐻))

temporarily add it and repeat from (*)

Otherwise add new edges belonging to this component

​ 𝐻↓9 ↑∗ 

​𝐻↓1↑∗  ​ 𝐻 ↓1 0↑ ∗  ​𝐻↓3↑∗  ​ 𝐻↓4↑ ∗ 

​ 𝐻↓5↑ ∗ 

​𝐻↓6​ ↑∗  𝐻 ↓ 1 1 ↑ ∗ 

​𝐻↓2↑∗ 

​𝐻↓7↑∗ 

​ 𝐻↓8↑ ∗ 

ANALYSIS

Lemma 1: Total cost of blue edges ≤𝛼∑↑▒​𝑙𝑏(𝐻↓𝑖↑∗ ) 

=𝛼𝑂𝑃​𝑇↓𝐻𝐾  •  Charging scheme

​ ​ ​ 𝐻 𝐻 𝐻 ↓ ↓ ​𝐻↓2↑∗  ​ ​𝐻↓1↑∗  ↓ 5 9 ​ 𝐻 ↑ ​ 1 ↑ ​ ​𝐻 ↓  0 ∗ 𝐻 ∗  𝐻↓3 𝐻↓7 6 ↑ ↓ ↑∗  ↑∗  ↓↑∗  4∗ 8   ↑ ↑ Charged to 𝐻 ​ ↓ 6 ↑ ∗   ∗  ∗ 

​ ​ ​ 𝐻 𝐻 𝐻 ↓ ↓ ​𝐻↓1↑∗  ↓ 5​ 9 1 ​ ↑ 𝐻 ↑ ​ 𝐻0 ↓∗6  ∗  𝐻↓3 ↑ ↓ ↑∗  ↑∗  4∗ ↑  Charged ∗  to ​𝐻↓2↑∗ 

​𝐻↓2↑∗  ​ ​𝐻 𝐻↓7 ↓↑∗  8 ↑ ∗ 

•  At most one cycle of weight ≤𝛼𝑙𝑏(​𝐻↓𝑖↑∗ )  is charged to each ​𝐻↓𝑖↑∗ 

Lemma 2: Total cost of red edges ≤2𝛼∑​𝐻↓𝑖↑∗ =2𝛼𝑂𝑃​

𝑇↓𝐻𝐾 

Charging scheme: the red components with 𝑙𝑜𝑤(𝐻)=​𝐻↓𝑖↑∗  is charged to ​ 𝐻↓𝑖↑∗  Charge in one iteration to ​𝑯↓𝟓↑∗  is at most 𝟐𝜶𝒍𝒃(​𝑯↓𝟓↑∗ )

​ 𝐻↓5↑ ∗  ​𝐻↓2 

​ ​𝐻↓1  𝐻 ↓1 ​ ↓6​ ↑∗  𝐻 0↑ ∗  𝐻 ↓ 1 1 ↑ ∗ 

𝑤(​𝐻↓1 )+𝑤(​𝐻↓2 )+𝑤(​𝐻↓3 )

≤𝛼𝑙𝑏(​𝐻↓1 )+𝛼𝑙𝑏(​𝐻↓2 )  +𝛼𝑙𝑏(​𝐻↓3 ) ​ ↓3  𝐻 ≤2𝛼𝑙𝑏(​𝐻↓5↑∗ )

​𝐻↓7↑∗  By Claim 2

​𝐻↓3↑∗ 

Lemma 2: Total cost of red edges ≤2𝛼∑​𝐻↓𝑖↑∗ =2𝛼𝑂𝑃​

𝑇↓𝐻𝐾 

Charging scheme: the red components with 𝑙𝑜𝑤(𝐻)=​𝐻↓𝑖↑∗  is charged to ​ 𝐻↓𝑖↑∗  Charge in one iteration to ​𝑯↓𝟓↑∗  is at most 𝟐𝜶𝒍𝒃(​𝑯↓𝟓↑∗ )

Lemma 2: Total cost of red edges ≤2𝛼∑​𝐻↓𝑖↑∗ =2𝛼𝑂𝑃​

𝑇↓𝐻𝐾 

Charging scheme: the red components with 𝑙𝑜𝑤(𝐻)=​𝐻↓𝑖↑∗  is charged to ​ 𝐻↓𝑖↑∗  Charge in one iteration to ​𝑯↓𝟓↑∗  is at most 𝟐𝜶𝒍𝒃(​𝑯↓𝟓↑∗ )

​𝑯↓𝟓↑∗  charged in at most one iteration

​ 𝐻 ↓1 0↑ ∗ 

​ 𝐻↓5↑ ∗ 

​𝐻↓6​ ↑∗  𝐻 ↓ 1 1 ↑ ∗ 

Suppose toward contradiction that not

𝐻

​𝐻↓7↑∗ 

​𝐻↓3↑∗ 

​ 𝐻↓ 9↑∗ 

By Claim 1 𝑤(𝐻)≤𝛼𝑙𝑏(​𝐻↓5↑∗ )                        ≤𝛼𝑙𝑏(​𝐻↓3↑∗ )

​𝐻↓8↑∗  Hence, exist cycle C which contradicts that the ifcondition was not satisfied

Lemma 2: Total cost of red edges ≤2𝛼∑​𝐻↓𝑖↑∗ =2𝛼𝑂𝑃​

𝑇↓𝐻𝐾 

Charge in one iteration to ​𝑯↓𝟓↑∗  is at most 𝟐𝜶𝒍𝒃(​𝑯↓𝟓↑∗ )

​𝑯↓𝟓↑∗  charged in at most one iteration

Total Cost: Eulerian partition + Blue edges + Red edges ≤2𝛼𝑂𝑃​𝑇↓𝐻𝐾 +𝛼𝑂𝑃​𝑇↓𝐻𝐾 +2𝛼𝑂𝑃​𝑇↓𝐻𝐾 

Summary •  New approach that relaxes connectivity •  Integrality gap for node-weighted metrics is ≤13 •  Q1: Solve Local-Connectivity ATSP for general metrics? •  Very flexible choice of lb can be helpful •  Primal-dual? •  Q2: Tight answer for Node-Weighted? •  Q3: What about Node-Weighted Symmetric TSP?