Axiomatizing Bisimulation Equivalences and ... - Semantic Scholar

Report 3 Downloads 103 Views
Axiomatizing Bisimulation Equivalences and Metrics from Probabilistic SOS Rules

Pedro R. D’Argenio1 , Daniel Gebler2 , Matias David Lee1 1

FaMAF, Universidad Nacional de Córdoba/CONICET, Argentina 2

VU University Amsterdam, The Netherlands

FoSSaCS 2014 11 April 2014

1 / 21

Motivation ? a.((b ⊕1/2 0) + (b ⊕1/.2 0)) ≡ a.(b ⊕1/2 0)

2 / 21

Motivation ? a.((b ⊕1/2 0) + (b ⊕1/.2 0)) ≡ a.(b ⊕1/2 0)

a.((b ⊕1/2 0) + (b ⊕1/2 0))

a.(b ⊕1/2 0)

?



a

Spec ⊢

1/4

b+b

a

◦ 1/4

b+0

1/4

0+b



1/4

1/2

0+0

b

1/2

0

Coinductive approach: Verification of bisim equivalence on induced TS

2 / 21

Motivation ? a.((b ⊕1/2 0) + (b ⊕1/.2 0)) ≡ a.(b ⊕1/2 0)

a.((b ⊕1/2 0) + (b ⊕1/2 0))

a.(b ⊕1/2 0)

?



a

Spec ⊢

1/4

b+b

a

◦ 1/4

b+0

1/4

0+b



1/4

1/2

0+0

b

1/2

0

Coinductive approach: Verification of bisim equivalence on induced TS

2 / 21

Motivation ? a.((b ⊕1/2 0) + (b ⊕1/.2 0)) ≡ a.(b ⊕1/2 0)

Axiom(Spec)

?

⊢ a.((b ⊕1/2 0) + (b ⊕1/2 0)) = a.(b ⊕1/2 0)

Axiomatic approach: Proof of bisim equivalence from derived ES

This talk: For any SOS specification we construct an equation system that is sound and ground complete wrt. bisimulation semantics

2 / 21

Motivation ? a.((b ⊕1/2 0) + (b ⊕1/.2 0)) ≡ a.(b ⊕1/2 0)

Axiom(Spec)

?

⊢ a.((b ⊕1/2 0) + (b ⊕1/2 0)) = a.(b ⊕1/2 0)

Axiomatic approach: Proof of bisim equivalence from derived ES

This talk: For any SOS specification we construct an equation system that is sound and ground complete wrt. bisimulation semantics

2 / 21

Motivation ? a.((b ⊕1/2 0) + (b ⊕1/.2 0)) ≡ a.(b ⊕1/2 0)

Axiom(Spec)

?

⊢ a.((b ⊕1/2 0) + (b ⊕1/2 0)) = a.(b ⊕1/2 0)

Axiomatic approach: Proof of bisim equivalence from derived ES

This talk: For any SOS specification we construct an equation system that is sound and ground complete wrt. bisimulation semantics

2 / 21

Probabilistic Transition Systems

A probabilistic transition system (S, A, − →) consists of a (countable) set of states S a (countable) set of actions A a transition relation → − ⊆ S × A × ∆(S) with ∆(S) the set of probability distributions over S.

3 / 21

Bisimulation equivalence of PTS An equivalence R ⊆ S × S is a bisimulation equivalence if s1. ∀ a π1

s2

R

a ∃ π2

R

with π1 R π2 iff π1 (C) = π2 (C) for all C ∈ S/R. p.

q.



a

a

◦ 0.6

1.0

p2

p3

b

c





0.3 0.4

0.3

1.0



q′2

q2 0.5

b

b



0.4

q3 0.5

c

1.0

◦ 4 / 21

Bisimulation equivalence of PTS An equivalence R ⊆ S × S is a bisimulation equivalence if s1. ∀ a π1

s2

R

a ∃ π2

R

with π1 R π2 iff π1 (C) = π2 (C) for all C ∈ S/R. p.

q.



a

a

◦ 0.6

1.0

p2

p3

b

c





0.3 0.4

0.3

1.0



q′2

q2 0.5

b

b



0.4

q3 0.5

c

1.0

◦ 4 / 21

Bisimulation equivalence of PTS An equivalence R ⊆ S × S is a bisimulation equivalence if s1. ∀ a π1

s2

R

a ∃ π2

R

with π1 R π2 iff π1 (C) = π2 (C) for all C ∈ S/R. p.

q.



a

a

◦ 0.6

1.0

p2

p3

b

c





0.3 0.4

0.3

1.0



q′2

q2 0.5

b

b



0.4

q3 0.5

c

1.0

◦ 4 / 21

Bisimulation equivalence of PTS An equivalence R ⊆ S × S is a bisimulation equivalence if s1. ∀ a π1

s2

R

a ∃ π2

R

with π1 R π2 iff π1 (C) = π2 (C) for all C ∈ S/R. p.

q.



a

a

◦ 0.6

1.0

p2

p3

b

c





0.3 0.4

0.3

1.0



q′2

q2 0.5

b

b



0.4

q3 0.5

c

1.0

◦ 4 / 21

SOS by Example Spec

Proof a a.x − →. δ(x)

a

a

a.P − → δ(P) a

a

x− →µ

y− →ν

a.Q − → δ(Q) a

a.P +0.3 a.Q − → δ(P) ⊕0.3 δ(Q)

a

x +p y − → µ ⊕p ν

PTS

a.P

a.Q

a

a



a.P +0.3 a.Q a





1.0

1.0

P

Q

0.3

P

0.7

Q

5 / 21

SOS by Example Spec

Proof a a.x − →. δ(x)

a

a

a.P − → δ(P) a

a

x− →µ

y− →ν

a.Q − → δ(Q) a

a.P +0.3 a.Q − → δ(P) ⊕0.3 δ(Q)

a

x +p y − → µ ⊕p ν

PTS

a.P

a.Q

a

a



a.P +0.3 a.Q a





1.0

1.0

P

Q

0.3

P

0.7

Q

5 / 21

SOS by Example Spec

Proof a a.x − →. δ(x)

a

a

a.P − → δ(P) a

a

x− →µ

y− →ν

a.Q − → δ(Q) a

a.P +0.3 a.Q − → δ(P) ⊕0.3 δ(Q)

a

x +p y − → µ ⊕p ν

PTS

a.P

a.Q

a

a



a.P +0.3 a.Q a





1.0

1.0

P

Q

0.3

P

0.7

Q

5 / 21

SOS by Example Spec

Proof a a.x − →. δ(x)

a

a

a.P − → δ(P) a

a

x− →µ

y− →ν

a.Q − → δ(Q) a

a.P +0.3 a.Q − → δ(P) ⊕0.3 δ(Q)

a

x +p y − → µ ⊕p ν

PTS

a.P

a.Q

a

a



a.P +0.3 a.Q a





1.0

1.0

P

Q

0.3

P

0.7

Q

5 / 21

From GSOS to probabilistic GSOS ai,m

{xi −−→ yi,m | i ∈ I, m ∈ Mi }

bj,n

{xj −−→ ̸ | j ∈ J, n ∈ Nj } a

f(x1 , . . . , xr(f) ) − →t

6 / 21

From GSOS to probabilistic GSOS ai,m

{xi −−→ µi,m | i ∈ I, m ∈ Mi }

bj,n

{xj −−→ ̸ | j ∈ J, n ∈ Nj } a

f(ζ1 , . . . , ζr(f) ) − →θ Two sorted signature (state and distribution terms) and each state operator is also available for distributions Distribution terms are defined as smallest set including distribution variables µ ∈ Vd instantiable Dirac distributions δ(t) for state term t ⊕ ∑ θ if θ p i are distribution terms and pi ∈ (0, 1] with i∈I i i i∈I pi = 1 f(θ1 , . . . , θr(f) ) if θi are distribution terms and f ∈ Σ

6 / 21

From GSOS to probabilistic GSOS ai,m

{xi −−→ µi,m | i ∈ I, m ∈ Mi }

bj,n

{xj −−→ ̸ | j ∈ J, n ∈ Nj } a

f(ζ1 , . . . , ζr(f) ) − →θ Two sorted signature (state and distribution terms) and each state operator is also available for distributions Distribution terms are defined as smallest set including distribution variables µ ∈ Vd instantiable Dirac distributions δ(t) for state term t ⊕ ∑ θ if θ p i are distribution terms and pi ∈ (0, 1] with i∈I i i i∈I pi = 1 f(θ1 , . . . , θr(f) ) if θi are distribution terms and f ∈ Σ

6 / 21

From GSOS to probabilistic GSOS ai,m

{xi −−→ µi,m | i ∈ I, m ∈ Mi }

bj,n

{xj −−→ ̸ | j ∈ J, n ∈ Nj } a

f(ζ1 , . . . , ζr(f) ) − →θ Two sorted signature (state and distribution terms) and each state operator is also available for distributions Distribution terms are defined as smallest set including distribution variables µ ∈ Vd instantiable Dirac distributions δ(t) for state term t ⊕ ∑ θ if θ p i are distribution terms and pi ∈ (0, 1] with i∈I i i i∈I pi = 1 f(θ1 , . . . , θr(f) ) if θi are distribution terms and f ∈ Σ Distribution term f(θ1 , . . . , θr(f) ) represents the element-wise application of operator f to elements in θi , that is for closed substitution σ distribution

state term

r(f) z }| {z }| { ∏ σ(θi )(ti ) σ(f(θ1 , . . . , θr(f) ))(f(t1 , . . . , tr(f) )) = i=1 6 / 21

Parallel composition a

a

x− →µ y− →ν a

x|y− →µ|ν P.

Q a

a

◦ 0.4

◦ 0.3

0.6

P1

Q1

P2

0.7

Q2

P|Q a

0.12

P1 | Q1

◦ 0.28

P1 | Q2

0.18

P2 | Q1

0.42

P2 | Q2 7 / 21

Parallel composition a

a

x− →µ y− →ν a

x|y− →µ|ν P.

Q a

a

◦ 0.4

◦ 0.3

0.6

P1

Q1

P2

0.7

Q2

P|Q a

0.12

P1 | Q1

◦ 0.28

P1 | Q2

0.18

P2 | Q1

0.42

P2 | Q2 7 / 21

Parallel composition a

a

x− →µ y− →ν a

x|y− →µ|ν P.

Q a

a

◦ 0.4

◦ 0.3

0.6

P1

Q1

P2

0.7

Q2

P|Q a

0.12

P1 | Q1

◦ 0.28

P1 | Q2

0.18

P2 | Q1

0.42

P2 | Q2 7 / 21

Bisimilarity is a congruence for PTSS

.

Theorem (Lee, Gebler, and D’Argenio (2012, 2013, 2014))

. For any PTSS in PGSOS format strong and convex bisimilarity equivalence is a congruence. .

8 / 21

Axiomatization strategy

. Axiomatization of basic probabilistic CCS 2. Axiomatization of distinctive operators 3. Axiomatization of smooth operators 4. Axiomatization of non-smooth operators 1

9 / 21

Basic probabilistic CCS

a

a.µ − →µ

a

x− →µ a

x+y− →µ

a

y− →µ a

x+y− →µ

10 / 21

Axiomatization of bisimilarity of bpCCS x+y=y+x (x + y) + z = x + (y + z) x+0=x x+x=x

(N3) (N4)

µ ⊕p µ = µ

(P1)

µ1 ⊕p µ2 = µ2 ⊕1−p µ1 p2 µ1 ⊕p1 (µ2 ⊕ 1−p µ3 ) = (µ1 ⊕ p p+p µ2 ) ⊕p1 +p2 µ3 1 1

(N1) (N2)

1

(P2) (P3)

2

(µ1 ⊕p µ2 ) + µ3 = (µ1 + µ3 ) ⊕p (µ2 + µ3 ) µ1 + (µ2 ⊕p µ3 ) = (µ1 + µ2 ) ⊕p (µ1 + µ3 ) δ(x) + δ(y) = δ(x + y)

(NP1) (NP2) (NP3)

Theorem: ECCS is sound and ground-complete for strong bisimilarity. 11 / 21

Axiomatization of bisimilarity of bpCCS x+y=y+x (x + y) + z = x + (y + z) x+0=x x+x=x

(N3) (N4)

µ ⊕p µ = µ

(P1)

µ1 ⊕p µ2 = µ2 ⊕1−p µ1 p2 µ1 ⊕p1 (µ2 ⊕ 1−p µ3 ) = (µ1 ⊕ p p+p µ2 ) ⊕p1 +p2 µ3 1 1

(N1) (N2)

1

(P2) (P3)

2

(µ1 ⊕p µ2 ) + µ3 = (µ1 + µ3 ) ⊕p (µ2 + µ3 ) µ1 + (µ2 ⊕p µ3 ) = (µ1 + µ2 ) ⊕p (µ1 + µ3 ) δ(x) + δ(y) = δ(x + y)

(NP1) (NP2) (NP3)

Theorem: ECCS is sound and ground-complete for strong bisimilarity. 11 / 21

Axiomatization of bisimilarity of bpCCS x+y=y+x (x + y) + z = x + (y + z) x+0=x x+x=x

(N3) (N4)

µ ⊕p µ = µ

(P1)

µ1 ⊕p µ2 = µ2 ⊕1−p µ1 p2 µ1 ⊕p1 (µ2 ⊕ 1−p µ3 ) = (µ1 ⊕ p p+p µ2 ) ⊕p1 +p2 µ3 1 1

(N1) (N2)

1

(P2) (P3)

2

(µ1 ⊕p µ2 ) + µ3 = (µ1 + µ3 ) ⊕p (µ2 + µ3 ) µ1 + (µ2 ⊕p µ3 ) = (µ1 + µ2 ) ⊕p (µ1 + µ3 ) δ(x) + δ(y) = δ(x + y)

(NP1) (NP2) (NP3)

Theorem: ECCS is sound and ground-complete for strong bisimilarity. 11 / 21

Axiomatization of bisimilarity of bpCCS x+y=y+x (x + y) + z = x + (y + z) x+0=x x+x=x

(N3) (N4)

µ ⊕p µ = µ

(P1)

µ1 ⊕p µ2 = µ2 ⊕1−p µ1 p2 µ1 ⊕p1 (µ2 ⊕ 1−p µ3 ) = (µ1 ⊕ p p+p µ2 ) ⊕p1 +p2 µ3 1 1

(N1) (N2)

1

(P2) (P3)

2

(µ1 ⊕p µ2 ) + µ3 = (µ1 + µ3 ) ⊕p (µ2 + µ3 ) µ1 + (µ2 ⊕p µ3 ) = (µ1 + µ2 ) ⊕p (µ1 + µ3 ) δ(x) + δ(y) = δ(x + y)

(NP1) (NP2) (NP3)

Theorem: ECCS is sound and ground-complete for strong bisimilarity. 11 / 21

Smooth operator A PGSOS rule is smooth if it has the form ai,m

{xi −−→ µi,m | i ∈ I, m ∈ Mi }

bj,n

{xj −−→ ̸ | j ∈ J, n ∈ Nj } a

f(ζ1 , . . . , ζr(f) ) − →θ and 1. I and J are disjoint sets 2. I ∪ J = {i ∈ {1, .., r(f)} | ζ ∈ V} i 3. x ̸∈ Var(θ) if i ∈ I. i Examples: a

y− →ν

a

x− →µ

x∥y− → µ ∥ δ(y)

x∥y− → δ(x) ∥ ν

x+y− →µ

x− →µ a

a

a

a

a

y− →ν a

x+y− →ν

12 / 21

Smooth operator A PGSOS rule is smooth if it has the form bj,n

a

i {xi −→ µi | i ∈ I} {xj −−→ ̸ | j ∈ J, n ∈ Nj }

a

f(ζ1 , . . . , ζr(f) ) − →θ and 1. I and J are disjoint sets 2. I ∪ J = {i ∈ {1, .., r(f)} | ζ ∈ V} i 3. x ̸∈ Var(θ) if i ∈ I. i Examples: a

y− →ν

a

x− →µ

x∥y− → µ ∥ δ(y)

x∥y− → δ(x) ∥ ν

x+y− →µ

x− →µ a

a

a

a

a

y− →ν a

x+y− →ν

12 / 21

Smooth operator A PGSOS rule is smooth if it has the form bj,n

a

i {xi −→ µi | i ∈ I} {xj −−→ ̸ | j ∈ J, n ∈ Nj }

a

f(ζ1 , . . . , ζr(f) ) − →θ and 1. I and J are disjoint sets 2. I ∪ J = {i ∈ {1, .., r(f)} | ζ ∈ V} i 3. x ̸∈ Var(θ) if i ∈ I. i Examples: a

y− →ν

a

x− →µ

x∥y− → µ ∥ δ(y)

x∥y− → δ(x) ∥ ν

x+y− →µ

x− →µ a

a

a

a

a

y− →ν a

x+y− →ν

12 / 21

Smooth operator A PGSOS rule is smooth if it has the form bj,n

a

i {xi −→ µi | i ∈ I} {xj −−→ ̸ | j ∈ J, n ∈ Nj }

a

f(ζ1 , . . . , ζr(f) ) − →θ and 1. I and J are disjoint sets 2. I ∪ J = {i ∈ {1, .., r(f)} | ζ ∈ V} i 3. x ̸∈ Var(θ) if i ∈ I. i Examples: a

y− →ν

a

x− →µ

x∥y− → µ ∥ δ(y)

x∥y− → δ(x) ∥ ν

x+y− →µ

x− →µ a

a

a

a

a

y− →ν a

x+y− →ν

12 / 21

Distinctive operator A smooth operator f is distinctive if 1. each f-defining rule tests the same arguments I positively, and 2. different f-defining rules test some some argument i ∈ I positively with different action. a

Example:

Counterexample:

a

a

x− →µ y− →ν

x− →µ

a

x6y− → µ ∥ δ(y)

x|y− →µ|ν

a

a

y− →ν

x∥y− → µ ∥ δ(y)

x∥y− → δ(x) ∥ ν

x− →µ a

a

a

13 / 21

Distinctive operator A smooth operator f is distinctive if 1. each f-defining rule tests the same arguments I positively, and 2. different f-defining rules test some some argument i ∈ I positively with different action. a

Example:

Counterexample:

a

a

x− →µ y− →ν

x− →µ

a

x6y− → µ ∥ δ(y)

x|y− →µ|ν

a

a

y− →ν

x∥y− → µ ∥ δ(y)

x∥y− → δ(x) ∥ ν

x− →µ a

a

a

13 / 21

Distinctive operator A smooth operator f is distinctive if 1. each f-defining rule tests the same arguments I positively, and 2. different f-defining rules test some some argument i ∈ I positively with different action. a

Example:

Counterexample:

a

a

x− →µ y− →ν

x− →µ

a

x6y− → µ ∥ δ(y)

x|y− →µ|ν

a

a

y− →ν

x∥y− → µ ∥ δ(y)

x∥y− → δ(x) ∥ ν

x− →µ a

a

a

13 / 21

Axiomatization of a smooth operator a

y− →ν

a

→ µ ∥ δ(y) x∥y−

→ δ(x) ∥ ν x∥y−

x− →µ a

a

a

x− →µ a

x6y− → µ ∥ δ(y) (x + y) 6 z = (x 6 z) + (y 6 z) x 6 (y + z) = (x 6 y) + (x 6 z) (a.µ) 6 y = a.(µ ∥ δ(y)) 06y=0 (µ1 ⊕p µ′1 ) 6 µ2 = (µ1 6 µ2 ) ⊕p (µ′1 6 µ2 ) µ1 6 (µ2 ⊕p µ′2 ) = (µ1 6 µ2 ) ⊕p (µ1 6 µ′2 ) δ(x) 6 δ(y) = δ(x 6 y) x ∥ y = (x 6 y) + (y 6 x)

(Nondet dist law 1) (Nondet dist law 2) (Action law) (Inaction law) (Prob dist law 1) (Prob dist law 2) (Dirac dist law) (Distinctive law) 14 / 21

Axiomatization of a smooth operator a

y− →ν

a

→ µ ∥ δ(y) x∥y−

→ δ(x) ∥ ν x∥y−

x− →µ a

a

a

x− →µ a

x6y− → µ ∥ δ(y) (x + y) 6 z = (x 6 z) + (y 6 z) x 6 (y + z) = (x 6 y) + (x 6 z) (a.µ) 6 y = a.(µ ∥ δ(y)) 06y=0 (µ1 ⊕p µ′1 ) 6 µ2 = (µ1 6 µ2 ) ⊕p (µ′1 6 µ2 ) µ1 6 (µ2 ⊕p µ′2 ) = (µ1 6 µ2 ) ⊕p (µ1 6 µ′2 ) δ(x) 6 δ(y) = δ(x 6 y) x ∥ y = (x 6 y) + (y 6 x)

(Nondet dist law 1) (Nondet dist law 2) (Action law) (Inaction law) (Prob dist law 1) (Prob dist law 2) (Dirac dist law) (Distinctive law) 14 / 21

Axiomatization of a smooth operator a

y− →ν

a

→ µ ∥ δ(y) x∥y−

→ δ(x) ∥ ν x∥y−

x− →µ a

a

a

x− →µ a

x6y− → µ ∥ δ(y) (x + y) 6 z = (x 6 z) + (y 6 z) x 6 (y + z) = (x 6 y) + (x 6 z) (a.µ) 6 y = a.(µ ∥ δ(y)) 06y=0 (µ1 ⊕p µ′1 ) 6 µ2 = (µ1 6 µ2 ) ⊕p (µ′1 6 µ2 ) µ1 6 (µ2 ⊕p µ′2 ) = (µ1 6 µ2 ) ⊕p (µ1 6 µ′2 ) δ(x) 6 δ(y) = δ(x 6 y) x ∥ y = (x 6 y) + (y 6 x)

(Nondet dist law 1) (Nondet dist law 2) (Action law) (Inaction law) (Prob dist law 1) (Prob dist law 2) (Dirac dist law) (Distinctive law) 14 / 21

Axiomatization of a smooth operator a

y− →ν

a

→ µ ∥ δ(y) x∥y−

→ δ(x) ∥ ν x∥y−

x− →µ a

a

a

x− →µ a

x6y− → µ ∥ δ(y) (x + y) 6 z = (x 6 z) + (y 6 z) x 6 (y + z) = (x 6 y) + (x 6 z) (a.µ) 6 y = a.(µ ∥ δ(y)) 06y=0 (µ1 ⊕p µ′1 ) 6 µ2 = (µ1 6 µ2 ) ⊕p (µ′1 6 µ2 ) µ1 6 (µ2 ⊕p µ′2 ) = (µ1 6 µ2 ) ⊕p (µ1 6 µ′2 ) δ(x) 6 δ(y) = δ(x 6 y) x ∥ y = (x 6 y) + (y 6 x)

(Nondet dist law 1) (Nondet dist law 2) (Action law) (Inaction law) (Prob dist law 1) (Prob dist law 2) (Dirac dist law) (Distinctive law) 14 / 21

Axiomatization of a smooth operator a

y− →ν

a

→ µ ∥ δ(y) x∥y−

→ δ(x) ∥ ν x∥y−

x− →µ a

a

a

x− →µ a

x6y− → µ ∥ δ(y) (x + y) 6 z = (x 6 z) + (y 6 z) x 6 (y + z) = (x 6 y) + (x 6 z) (a.µ) 6 y = a.(µ ∥ δ(y)) 06y=0 (µ1 ⊕p µ′1 ) 6 µ2 = (µ1 6 µ2 ) ⊕p (µ′1 6 µ2 ) µ1 6 (µ2 ⊕p µ′2 ) = (µ1 6 µ2 ) ⊕p (µ1 6 µ′2 ) δ(x) 6 δ(y) = δ(x 6 y) x ∥ y = (x 6 y) + (y 6 x)

(Nondet dist law 1) (Nondet dist law 2) (Action law) (Inaction law) (Prob dist law 1) (Prob dist law 2) (Dirac dist law) (Distinctive law) 14 / 21

Non-smooth operator Assume action a may fail with probability pa . Safe controller sc(t) that minimizes the probability of failure: a

x− →µ a

sc(x) − → sc(µ)

a

if pa = 0

b

x− → µ {x −→ ̸ | pb < pa } a

sc(x) − → δ(sc(x)) ⊕pa sc(µ)

if pa > 0

Operator sc(_) is not smooth.

15 / 21

Non-smooth operator Assume action a may fail with probability pa . Safe controller sc(t) that minimizes the probability of failure: a

x− →µ a

sc(x) − → sc(µ)

a

if pa = 0

b

x− → µ {x −→ ̸ | pb < pa } a

sc(x) − → δ(sc(x)) ⊕pa sc(µ)

if pa > 0

Operator sc(_) is not smooth.

15 / 21

Axiomatization of a non-smooth operator Specification of non-smooth sc(_) operator: a

x− →µ a

sc(x) − → sc(µ)

a

b

x− → µ {x −→ ̸ | pb < pa }

(pa = 0)

a

sc(x) − → δ(sc(x)) ⊕pa sc(µ)

(pa > 0)

Derived smooth operator sc(_, _) specified by: a

x− →µ a

sc(x, y) − → sc(µ)

a

b

x− → µ {y −→ ̸ | pb < pa }

(pa = 0)

a

sc(x, y) − → δ(y) ⊕pa sc(µ)

(pa > 0)

Axiomatization of sc(_) by: sc(x) = sc(x, x) together with axioms for sc(_, _). 16 / 21

Axiomatization of a non-smooth operator Specification of non-smooth sc(_) operator: a

x− →µ a

sc(x) − → sc(µ)

a

b

x− → µ {x −→ ̸ | pb < pa }

(pa = 0)

a

sc(x) − → δ(sc(x)) ⊕pa sc(µ)

(pa > 0)

Derived smooth operator sc(_, _) specified by: a

x− →µ a

sc(x, y) − → sc(µ)

a

b

x− → µ {y −→ ̸ | pb < pa }

(pa = 0)

a

sc(x, y) − → δ(y) ⊕pa sc(µ)

(pa > 0)

Axiomatization of sc(_) by: sc(x) = sc(x, x) together with axioms for sc(_, _). 16 / 21

Axiomatization of a non-smooth operator Specification of non-smooth sc(_) operator: a

x− →µ a

sc(x) − → sc(µ)

a

b

x− → µ {x −→ ̸ | pb < pa }

(pa = 0)

a

sc(x) − → δ(sc(x)) ⊕pa sc(µ)

(pa > 0)

Derived smooth operator sc(_, _) specified by: a

x− →µ a

sc(x, y) − → sc(µ)

a

b

x− → µ {y −→ ̸ | pb < pa }

(pa = 0)

a

sc(x, y) − → δ(y) ⊕pa sc(µ)

(pa > 0)

Axiomatization of sc(_) by: sc(x) = sc(x, x) together with axioms for sc(_, _). 16 / 21

Algorithm to generate the equational theory of a PTSS Input: PTSS Pi in PGSOS format Output: PTSS Po ⊒ Pi in PGSOS format and equational theory Eo . Complete Pi s.t. it disjointly extends CCS. 2. For each non-smooth operator extend the PTSS with a smooth version and add corresponding equations .3 For each smooth non-distinctive operator extend the PTSS with the distinctive operators and add corresponding equations 4. Add all equations associated to the distinctive operators in the resulting system 1

Observation: If t ∈ Po is semantically well-founded, then there is a t ∈ T(ΣCCS ) s.t. Eo ⊢ t = t′ Theorem: If Pi is semantically well-founded, then Eo is sound and ground-complete for strong bisimulation equivalence in Po . 17 / 21

Algorithm to generate the equational theory of a PTSS Input: PTSS Pi in PGSOS format Output: PTSS Po ⊒ Pi in PGSOS format and equational theory Eo . Complete Pi s.t. it disjointly extends CCS. 2. For each non-smooth operator extend the PTSS with a smooth version and add corresponding equations .3 For each smooth non-distinctive operator extend the PTSS with the distinctive operators and add corresponding equations 4. Add all equations associated to the distinctive operators in the resulting system 1

Observation: If t ∈ Po is semantically well-founded, then there is a t ∈ T(ΣCCS ) s.t. Eo ⊢ t = t′ Theorem: If Pi is semantically well-founded, then Eo is sound and ground-complete for strong bisimulation equivalence in Po . 17 / 21

Algorithm to generate the equational theory of a PTSS Input: PTSS Pi in PGSOS format Output: PTSS Po ⊒ Pi in PGSOS format and equational theory Eo . Complete Pi s.t. it disjointly extends CCS. 2. For each non-smooth operator extend the PTSS with a smooth version and add corresponding equations .3 For each smooth non-distinctive operator extend the PTSS with the distinctive operators and add corresponding equations 4. Add all equations associated to the distinctive operators in the resulting system 1

Observation: If t ∈ Po is semantically well-founded, then there is a t ∈ T(ΣCCS ) s.t. Eo ⊢ t = t′ Theorem: If Pi is semantically well-founded, then Eo is sound and ground-complete for strong bisimulation equivalence in Po . 17 / 21

Algorithm to generate the equational theory of a PTSS Input: PTSS Pi in PGSOS format Output: PTSS Po ⊒ Pi in PGSOS format and equational theory Eo . Complete Pi s.t. it disjointly extends CCS. 2. For each non-smooth operator extend the PTSS with a smooth version and add corresponding equations .3 For each smooth non-distinctive operator extend the PTSS with the distinctive operators and add corresponding equations 4. Add all equations associated to the distinctive operators in the resulting system 1

Observation: If t ∈ Po is semantically well-founded, then there is a t ∈ T(ΣCCS ) s.t. Eo ⊢ t = t′ Theorem: If Pi is semantically well-founded, then Eo is sound and ground-complete for strong bisimulation equivalence in Po . 17 / 21

Algorithm to generate the equational theory of a PTSS Input: PTSS Pi in PGSOS format Output: PTSS Po ⊒ Pi in PGSOS format and equational theory Eo . Complete Pi s.t. it disjointly extends CCS. 2. For each non-smooth operator extend the PTSS with a smooth version and add corresponding equations .3 For each smooth non-distinctive operator extend the PTSS with the distinctive operators and add corresponding equations 4. Add all equations associated to the distinctive operators in the resulting system 1

Observation: If t ∈ Po is semantically well-founded, then there is a t ∈ T(ΣCCS ) s.t. Eo ⊢ t = t′ Theorem: If Pi is semantically well-founded, then Eo is sound and ground-complete for strong bisimulation equivalence in Po . 17 / 21

Algorithm to generate the equational theory of a PTSS Input: PTSS Pi in PGSOS format Output: PTSS Po ⊒ Pi in PGSOS format and equational theory Eo . Complete Pi s.t. it disjointly extends CCS. 2. For each non-smooth operator extend the PTSS with a smooth version and add corresponding equations .3 For each smooth non-distinctive operator extend the PTSS with the distinctive operators and add corresponding equations 4. Add all equations associated to the distinctive operators in the resulting system 1

Observation: If t ∈ Po is semantically well-founded, then there is a t ∈ T(ΣCCS ) s.t. Eo ⊢ t = t′ Theorem: If Pi is semantically well-founded, then Eo is sound and ground-complete for strong bisimulation equivalence in Po . 17 / 21

Algorithm to generate the equational theory of a PTSS Input: PTSS Pi in PGSOS format Output: PTSS Po ⊒ Pi in PGSOS format and equational theory Eo . Complete Pi s.t. it disjointly extends CCS. 2. For each non-smooth operator extend the PTSS with a smooth version and add corresponding equations .3 For each smooth non-distinctive operator extend the PTSS with the distinctive operators and add corresponding equations 4. Add all equations associated to the distinctive operators in the resulting system 1

Observation: If t ∈ Po is semantically well-founded, then there is a t ∈ T(ΣCCS ) s.t. Eo ⊢ t = t′ Theorem: If Pi is semantically well-founded, then Eo is sound and ground-complete for strong bisimulation equivalence in Po . 17 / 21

Motivation of Metrics as Behavioral Semantics

implementation

System . Specification

? ⇔

System Implementation

measurement Behavioral equivalence semantics is fragile because of: Implementation errors Measurement errors

18 / 21

Motivation of Metrics as Behavioral Semantics

implementation

System . Specification

? ⇔

System Implementation

measurement Behavioral equivalence semantics is fragile because of: Implementation errors Measurement errors

18 / 21

Bisimulation Metrics between PTS A pseudometric d : S × S → [0, 1] is a bisimulation metric if s1.

d(s1 , s2 ) ≤ ϵ

s2

∀ a π1

a ∃ K(d)(π1 , π2 ) ≤ ϵ

π2

with K(d) : ∆(S) × ∆(S) → [0, 1] lifts state metric d to distributions. p.

q

a 0.25

p2

a



0.25

0.75





b

0.75



q2 b



1 − 4ϵ





1.0

p3 c

1.0



p3



c

1.0



19 / 21

Bisimulation Metrics between PTS A pseudometric d : S × S → [0, 1] is a bisimulation metric if s1.

d(s1 , s2 ) ≤ ϵ

s2

∀ a π1

a ∃ K(d)(π1 , π2 ) ≤ ϵ

π2

with K(d) : ∆(S) × ∆(S) → [0, 1] lifts state metric d to distributions. p.

q

a 0.25

p2

a



0.25

0.75





b

0.75



q2 b



1 − 4ϵ





1.0

p3 c

1.0



p3



c

1.0



19 / 21

Bisimulation Metrics between PTS A pseudometric d : S × S → [0, 1] is a bisimulation metric if s1.

d(s1 , s2 ) ≤ ϵ

s2

∀ a π1

a ∃ K(d)(π1 , π2 ) ≤ ϵ

π2

with K(d) : ∆(S) × ∆(S) → [0, 1] lifts state metric d to distributions. p.

q

a 0.25

p2

a



0.25

0.75





d(p2 , q2 ) = 4ϵ

b

0.75



q2 b



1 − 4ϵ





1.0

p3 c

1.0



p3



c

1.0



19 / 21

Bisimulation Metrics between PTS A pseudometric d : S × S → [0, 1] is a bisimulation metric if s1.

d(s1 , s2 ) ≤ ϵ

s2

∀ a π1

a ∃ K(d)(π1 , π2 ) ≤ ϵ

π2

with K(d) : ∆(S) × ∆(S) → [0, 1] lifts state metric d to distributions. p.

q

d(p, q) = ϵ

a 0.25

p2

a



0.25

0.75





d(p2 , q2 ) = 4ϵ

b

0.75



q2 b



1 − 4ϵ





1.0

p3 c

1.0



p3



c

1.0



19 / 21

Axiomatization of bisimulation metric 1. Lift axioms of bisimulation equivalence to bisimulation metric: d(t, x) = d(t′ , x)

where t = t′ is one of axioms N1–N4

d(θ, µ) = d(θ′ , µ)

where θ = θ′ is one of axioms NP1–NP3 or P1–P3

2. Axiomatize bisimulation inequivalence as bisimulation distance 1: d(0, a.µ + x) =1 ∑ ∑ d( ai .µi , bj .νj ) = 1 i∈I

if ∃ai .∀bj . ai ̸= bj or vica versa

j∈J

3. Axiomatization of bisimulation transfer condition: a

a

max H(K(d))({π | t − → π}, {π ′ | t′ − → π}) ≤ d(t, t′ ) a∈A

with K(_) the Kantorovich pseudometric and H(_) the Hausdorff pseudometric. Theorem: If Pi is semantically well-founded, then Eo is sound and ground-complete for strong bisimulation metric in Po . 20 / 21

Axiomatization of bisimulation metric 1. Lift axioms of bisimulation equivalence to bisimulation metric: d(t, x) = d(t′ , x)

where t = t′ is one of axioms N1–N4

d(θ, µ) = d(θ′ , µ)

where θ = θ′ is one of axioms NP1–NP3 or P1–P3

2. Axiomatize bisimulation inequivalence as bisimulation distance 1: d(0, a.µ + x) =1 ∑ ∑ d( ai .µi , bj .νj ) = 1 i∈I

if ∃ai .∀bj . ai ̸= bj or vica versa

j∈J

3. Axiomatization of bisimulation transfer condition: a

a

max H(K(d))({π | t − → π}, {π ′ | t′ − → π}) ≤ d(t, t′ ) a∈A

with K(_) the Kantorovich pseudometric and H(_) the Hausdorff pseudometric. Theorem: If Pi is semantically well-founded, then Eo is sound and ground-complete for strong bisimulation metric in Po . 20 / 21

Axiomatization of bisimulation metric 1. Lift axioms of bisimulation equivalence to bisimulation metric: d(t, x) = d(t′ , x)

where t = t′ is one of axioms N1–N4

d(θ, µ) = d(θ′ , µ)

where θ = θ′ is one of axioms NP1–NP3 or P1–P3

2. Axiomatize bisimulation inequivalence as bisimulation distance 1: d(0, a.µ + x) =1 ∑ ∑ d( ai .µi , bj .νj ) = 1 i∈I

if ∃ai .∀bj . ai ̸= bj or vica versa

j∈J

3. Axiomatization of bisimulation transfer condition: a

a

max H(K(d))({π | t − → π}, {π ′ | t′ − → π}) ≤ d(t, t′ ) a∈A

with K(_) the Kantorovich pseudometric and H(_) the Hausdorff pseudometric. Theorem: If Pi is semantically well-founded, then Eo is sound and ground-complete for strong bisimulation metric in Po . 20 / 21

Axiomatization of bisimulation metric 1. Lift axioms of bisimulation equivalence to bisimulation metric: d(t, x) = d(t′ , x)

where t = t′ is one of axioms N1–N4

d(θ, µ) = d(θ′ , µ)

where θ = θ′ is one of axioms NP1–NP3 or P1–P3

2. Axiomatize bisimulation inequivalence as bisimulation distance 1: d(0, a.µ + x) =1 ∑ ∑ d( ai .µi , bj .νj ) = 1 i∈I

if ∃ai .∀bj . ai ̸= bj or vica versa

j∈J

3. Axiomatization of bisimulation transfer condition: a

a

max H(K(d))({π | t − → π}, {π ′ | t′ − → π}) ≤ d(t, t′ ) a∈A

with K(_) the Kantorovich pseudometric and H(_) the Hausdorff pseudometric. Theorem: If Pi is semantically well-founded, then Eo is sound and ground-complete for strong bisimulation metric in Po . 20 / 21

Conclusion Summary Sound and ground-complete axiomatization of bisimulation equivalence and bisimulation distance for any PGSOS system Generalized SOS rules that allow ops to map into distribution sort Convex bisimilarity is a congruence for PGSOS operators Future work Axiomatization of weaker behavioral equivalences (trace and testing) Axiomatization of probabilistic choice by mean-value algebras Axiomatization of the Kantorovich operator by metric mean-value algebras and the Hausdorff operator in terms of metric semilattices

21 / 21

Conclusion Summary Sound and ground-complete axiomatization of bisimulation equivalence and bisimulation distance for any PGSOS system Generalized SOS rules that allow ops to map into distribution sort Convex bisimilarity is a congruence for PGSOS operators Future work Axiomatization of weaker behavioral equivalences (trace and testing) Axiomatization of probabilistic choice by mean-value algebras Axiomatization of the Kantorovich operator by metric mean-value algebras and the Hausdorff operator in terms of metric semilattices

21 / 21

Related work . Aceto,L., Bloom,B., Vaandrager,F.: Turning SOS Rules into Equations. LICS’92: 113-124 (1992) .2 Baeten,J., de Vink,E.: Axiomatizing GSOS with termination. JLAP. 60-61 (2004) 1

. Aceto,L., Caltais,G., Goriac,E.I., Ingólfsdóttir,A.: Axiomatizing GSOS with Predicates. SOS’11 (2011)

3

. Gazda, M., Fokkink, W.: Turning GSOS rules into equations for linear time-branching time semantics. The Computer Journal 56(1), (2013)

4

. Aceto,L., Goriac,E.I., Ingólfsdóttir,A., Mousavi,M.R., Reniers,M.A.: Exploiting algebraic laws to improve mechanized axiomatizations. CALCO’13. (2013) .6 D’Argenio, P.R., Gebler, D., and Lee, M.D. Axiomatizing Bisimulation Equivalences and Metrics from Probabilistic SOS Rules. FoSSaCS’14. (2014). 5

1 / 11

Structural Operational Semantics

.

Plotkin-style specifications .

Syntax based specification approach Inductive definition of transition relation by rules Defined transition system consists of: ▶

States are terms



Transition relation is inductively derived from rules and term structure

.

2 / 11

Specification approaches PLTS s1 4 0.

s.

a

π 0. 6

s2 PGSOS [Ba02] and RTSS [LT09] describe single s. PGSOS and RTSS require ▶ ▶

a

·

0.4

s1

indexed transitions rule format constraints on sets of rules

because different rules may produce the same transition Segala GSOS [Ba04] and ntµfθ/ntµxθ { [LGD12] describe all probabilistic s1 7→ 0.4 a π with π = moves together s. s2 7→ 0.6 3 / 11

Specification approaches PLTS s1 4 0.

s.

a

π 0. 6

s2 PGSOS [Ba02] and RTSS [LT09] describe single s. PGSOS and RTSS require ▶ ▶

a

·

0.4

s1

indexed transitions rule format constraints on sets of rules

because different rules may produce the same transition Segala GSOS [Ba04] and ntµfθ/ntµxθ { [LGD12] describe all probabilistic s1 7→ 0.4 a π with π = moves together s. s2 7→ 0.6 3 / 11

Hierarchy of congruence formats specifying PLTS . ntµfθ

tµfν single measured tµfν simple tµfν

tµfθ

single measured ntµfθ

single measured tµfθ

simple ntµfθ Segala GSOS

simple tµfθ PGSOS double testing RTSS

lookahead RTSS

(non-probabilistic) ntyft RTSS (non-probabilistic) tyft 4 / 11

Hierarchy of congruence formats specifying PLTS . ntµfθ

tµfν single measured tµfν simple tµfν

tµfθ

single measured ntµfθ

single measured tµfθ

simple ntµfθ Segala GSOS

simple tµfθ PGSOS double testing RTSS

lookahead RTSS

(non-probabilistic) ntyft RTSS (non-probabilistic) tyft 4 / 11

Hierarchy of congruence formats specifying PLTS . ntµfθ

tµfν single measured tµfν simple tµfν

tµfθ

single measured ntµfθ

single measured tµfθ

simple ntµfθ Segala GSOS

simple tµfθ PGSOS double testing RTSS

lookahead RTSS

(non-probabilistic) ntyft RTSS (non-probabilistic) tyft 4 / 11

Hierarchy of congruence formats specifying PLTS . ntµfθ

tµfν single measured tµfν simple tµfν

tµfθ

single measured ntµfθ

single measured tµfθ

simple ntµfθ Segala GSOS

simple tµfθ PGSOS double testing RTSS

lookahead RTSS

(non-probabilistic) ntyft RTSS (non-probabilistic) tyft 4 / 11

Sequential composition a

x− →µ a

x; y − → µ; δ(y) P.

Q a

a

◦ 0.4

P1

◦ 0.3

0.6

Q1

P2

0.7

Q2

P; Q a

◦ 0.4

P1 ; Q

0.6

P2 ; Q 5 / 11

Sequential composition a

x− →µ a

x; y − → µ; δ(y) P.

Q a

a

◦ 0.4

P1

◦ 0.3

0.6

Q1

P2

0.7

Q2

P; Q a

◦ 0.4

P1 ; Q

0.6

P2 ; Q 5 / 11

Sequential composition a

x− →µ a

x; y − → µ; δ(y) P.

Q a

a

◦ 0.4

P1

◦ 0.3

0.6

Q1

P2

0.7

Q2

P; Q a

◦ 0.4

P1 ; Q

0.6

P2 ; Q 5 / 11

Sequential composition a

x− →µ a

x; y − → µ; δ(y) P.

Q a

a

◦ 0.4

P1

◦ 0.3

0.6

Q1

P2

0.7

Q2

P; Q a

◦ 0.4

P1 ; Q

0.6

P2 ; Q 5 / 11

Probabilistic PA (non-probabilistic operators)

a

x− →µ

a ̸=





a

a

x; y − → µ; δ(y)

x; y − →ν a

a

y− →ν

x− →µ a

a

x+y− →µ

x+y− →ν

a

y− →µ

a

x|y− → µ | δ(y)

x|y− → δ(x) | µ

x− →µ a

a

x− →µ

a

y− →ν a

a

x −−→ µ y − →ν

a∈B

x ||B y − → µ ||B ν

a

a

x− →µ a∈ /B a

x ||B y − → µ ||B δ(y)

a

y− →µ a∈ /B a

x ||B y − → δ(x) ||B µ

6 / 11

Probabilistic PA (non-probabilistic operators)

a

x− →µ

a ̸=





a

a

x; y − → µ; δ(y)

x; y − →ν a

a

y− →ν

x− →µ a

a

x+y− →µ

x+y− →ν

a

y− →µ

a

x|y− → µ | δ(y)

x|y− → δ(x) | µ

x− →µ a

a

x− →µ

a

y− →ν a

a

x −−→ µ y − →ν

a∈B

x ||B y − → µ ||B ν

a

a

x− →µ a∈ /B a

x ||B y − → µ ||B δ(y)

a

y− →µ a∈ /B a

x ||B y − → δ(x) ||B µ

6 / 11

Probabilistic PA (non-probabilistic operators)

a

x− →µ

a ̸=





a

a

x; y − → µ; δ(y)

x; y − →ν a

a

y− →ν

x− →µ a

a

x+y− →µ

x+y− →ν

a

y− →µ

a

x|y− → µ | δ(y)

x|y− → δ(x) | µ

x− →µ a

a

x− →µ

a

y− →ν a

a

x −−→ µ y − →ν

a∈B

x ||B y − → µ ||B ν

a

a

x− →µ a∈ /B a

x ||B y − → µ ||B δ(y)

a

y− →µ a∈ /B a

x ||B y − → δ(x) ||B µ

6 / 11

Probabilistic PA (non-probabilistic operators)

a

x− →µ

a ̸=





a

a

x; y − → µ; δ(y)

x; y − →ν a

a

y− →ν

x− →µ a

a

x+y− →µ

x+y− →ν

a

y− →µ

a

x|y− → µ | δ(y)

x|y− → δ(x) | µ

x− →µ a

a

x− →µ

a

y− →ν a

a

x −−→ µ y − →ν

a∈B

x ||B y − → µ ||B ν

a

a

x− →µ a∈ /B a

x ||B y − → µ ||B δ(y)

a

y− →µ a∈ /B a

x ||B y − → δ(x) ||B µ

6 / 11

Probabilistic PA (probabilistic operators)

a

a

a

a

x− →µ y− →ν

x− →µ y− → ̸

a

x +p y − →µ

a

x− → ̸

a

x +p y − → µ ⊕p ν

a

a

y− →ν a

x +p y − →ν

a

x− →µ y− →ν a

x |p y − → µ |p δ(y) ⊕p δ(x) |p ν a

x− →µ a

a

y− → ̸

x |p y − → µ |p δ(y)

a

a

x− → ̸

y− →ν a

x |p y − → δ(x) |p ν

7 / 11

Probabilistic PA (probabilistic operators)

a

a

a

a

x− →µ y− →ν

x− →µ y− → ̸

a

x +p y − →µ

a

x− → ̸

a

x +p y − → µ ⊕p ν

a

a

y− →ν a

x +p y − →ν

a

x− →µ y− →ν a

x |p y − → µ |p δ(y) ⊕p δ(x) |p ν a

x− →µ a

a

y− → ̸

x |p y − → µ |p δ(y)

a

a

x− → ̸

y− →ν a

x |p y − → δ(x) |p ν

7 / 11

Motivation example revisited ECCS ⊢ (b ⊕1/2 0) + (b ⊕1/2 0) = b ⊕p 0 (b ⊕1/2 0) + (b ⊕1/2 0) = (b + (b ⊕1/2 0)) ⊕1/2 (0 + (b ⊕1/2 0)) = ((b + b) ⊕1/2 (b + 0)) ⊕1/2 (b ⊕1/2 0) = (b ⊕1/2 b) ⊕1/2 (b ⊕1/2 0) = b ⊕1/2 (b ⊕1/2 0) = b ⊕3/4 0 µ ⊕p µ = µ p2 µ1 ⊕p1 (µ2 ⊕ 1−p µ3 ) = (µ1 ⊕ p 1

p1 1 +p2

µ2 ) ⊕p1 +p2 µ3

(µ1 ⊕p µ2 ) + µ3 = (µ1 + µ3 ) ⊕p (µ2 + µ3 ) µ1 + (µ2 ⊕p µ3 ) = (µ1 + µ2 ) ⊕p (µ1 + µ3 )

(P1) (P3) (NP1) (NP2)

8 / 11

Motivation example revisited ECCS ⊢ (b ⊕1/2 0) + (b ⊕1/2 0) = b ⊕p 0 (b ⊕1/2 0) + (b ⊕1/2 0) = (b + (b ⊕1/2 0)) ⊕1/2 (0 + (b ⊕1/2 0)) = ((b + b) ⊕1/2 (b + 0)) ⊕1/2 (b ⊕1/2 0) = (b ⊕1/2 b) ⊕1/2 (b ⊕1/2 0) = b ⊕1/2 (b ⊕1/2 0) = b ⊕3/4 0 µ ⊕p µ = µ p2 µ1 ⊕p1 (µ2 ⊕ 1−p µ3 ) = (µ1 ⊕ p 1

p1 1 +p2

µ2 ) ⊕p1 +p2 µ3

(µ1 ⊕p µ2 ) + µ3 = (µ1 + µ3 ) ⊕p (µ2 + µ3 ) µ1 + (µ2 ⊕p µ3 ) = (µ1 + µ2 ) ⊕p (µ1 + µ3 )

(P1) (P3) (NP1) (NP2)

8 / 11

Motivation example revisited ECCS ⊢ (b ⊕1/2 0) + (b ⊕1/2 0) = b ⊕p 0 (b ⊕1/2 0) + (b ⊕1/2 0) = (b + (b ⊕1/2 0)) ⊕1/2 (0 + (b ⊕1/2 0)) = ((b + b) ⊕1/2 (b + 0)) ⊕1/2 (b ⊕1/2 0) = (b ⊕1/2 b) ⊕1/2 (b ⊕1/2 0) = b ⊕1/2 (b ⊕1/2 0) = b ⊕3/4 0 µ ⊕p µ = µ p2 µ1 ⊕p1 (µ2 ⊕ 1−p µ3 ) = (µ1 ⊕ p 1

p1 1 +p2

µ2 ) ⊕p1 +p2 µ3

(µ1 ⊕p µ2 ) + µ3 = (µ1 + µ3 ) ⊕p (µ2 + µ3 ) µ1 + (µ2 ⊕p µ3 ) = (µ1 + µ2 ) ⊕p (µ1 + µ3 )

(P1) (P3) (NP1) (NP2)

8 / 11

Motivation example revisited ECCS ⊢ (b ⊕1/2 0) + (b ⊕1/2 0) = b ⊕p 0 (b ⊕1/2 0) + (b ⊕1/2 0) = (b + (b ⊕1/2 0)) ⊕1/2 (0 + (b ⊕1/2 0)) = ((b + b) ⊕1/2 (b + 0)) ⊕1/2 (b ⊕1/2 0) = (b ⊕1/2 b) ⊕1/2 (b ⊕1/2 0) = b ⊕1/2 (b ⊕1/2 0) = b ⊕3/4 0 µ ⊕p µ = µ p2 µ1 ⊕p1 (µ2 ⊕ 1−p µ3 ) = (µ1 ⊕ p 1

p1 1 +p2

µ2 ) ⊕p1 +p2 µ3

(µ1 ⊕p µ2 ) + µ3 = (µ1 + µ3 ) ⊕p (µ2 + µ3 ) µ1 + (µ2 ⊕p µ3 ) = (µ1 + µ2 ) ⊕p (µ1 + µ3 )

(P1) (P3) (NP1) (NP2)

8 / 11

Motivation example revisited ECCS ⊢ (b ⊕1/2 0) + (b ⊕1/2 0) = b ⊕p 0 (b ⊕1/2 0) + (b ⊕1/2 0) = (b + (b ⊕1/2 0)) ⊕1/2 (0 + (b ⊕1/2 0)) = ((b + b) ⊕1/2 (b + 0)) ⊕1/2 (b ⊕1/2 0) = (b ⊕1/2 b) ⊕1/2 (b ⊕1/2 0) = b ⊕1/2 (b ⊕1/2 0) = b ⊕3/4 0 µ ⊕p µ = µ p2 µ1 ⊕p1 (µ2 ⊕ 1−p µ3 ) = (µ1 ⊕ p 1

p1 1 +p2

µ2 ) ⊕p1 +p2 µ3

(µ1 ⊕p µ2 ) + µ3 = (µ1 + µ3 ) ⊕p (µ2 + µ3 ) µ1 + (µ2 ⊕p µ3 ) = (µ1 + µ2 ) ⊕p (µ1 + µ3 )

(P1) (P3) (NP1) (NP2)

8 / 11

Motivation example revisited ECCS ⊢ (b ⊕1/2 0) + (b ⊕1/2 0) = b ⊕p 0 (b ⊕1/2 0) + (b ⊕1/2 0) = (b + (b ⊕1/2 0)) ⊕1/2 (0 + (b ⊕1/2 0)) = ((b + b) ⊕1/2 (b + 0)) ⊕1/2 (b ⊕1/2 0) = (b ⊕1/2 b) ⊕1/2 (b ⊕1/2 0) = b ⊕1/2 (b ⊕1/2 0) = b ⊕3/4 0 µ ⊕p µ = µ p2 µ1 ⊕p1 (µ2 ⊕ 1−p µ3 ) = (µ1 ⊕ p 1

p1 1 +p2

µ2 ) ⊕p1 +p2 µ3

(µ1 ⊕p µ2 ) + µ3 = (µ1 + µ3 ) ⊕p (µ2 + µ3 ) µ1 + (µ2 ⊕p µ3 ) = (µ1 + µ2 ) ⊕p (µ1 + µ3 )

(P1) (P3) (NP1) (NP2)

8 / 11

Motivation example revisited ECCS ⊢ (b ⊕1/2 0) + (b ⊕1/2 0) = b ⊕p 0 (b ⊕1/2 0) + (b ⊕1/2 0) = (b + (b ⊕1/2 0)) ⊕1/2 (0 + (b ⊕1/2 0)) = ((b + b) ⊕1/2 (b + 0)) ⊕1/2 (b ⊕1/2 0) = (b ⊕1/2 b) ⊕1/2 (b ⊕1/2 0) = b ⊕1/2 (b ⊕1/2 0) = b ⊕3/4 0 µ ⊕p µ = µ p2 µ1 ⊕p1 (µ2 ⊕ 1−p µ3 ) = (µ1 ⊕ p 1

p1 1 +p2

µ2 ) ⊕p1 +p2 µ3

(µ1 ⊕p µ2 ) + µ3 = (µ1 + µ3 ) ⊕p (µ2 + µ3 ) µ1 + (µ2 ⊕p µ3 ) = (µ1 + µ2 ) ⊕p (µ1 + µ3 )

(P1) (P3) (NP1) (NP2)

8 / 11

Axiomatization of a non-smooth operator a

x− →µ a

→ sc(µ) sc(x, y) −

a

(pa = 0)

b

x− → µ {y −→ ̸ | pb < pa } a

→ δ(y) ⊕pa sc(µ) sc(x, y) −

(pa > 0)

sc(x) = sc(x, x) sc(x1 + x2 , y) = sc(x1 , y) + sc(x2 , y) sc(a.µ, ∂H1 (x)) = a.(δ(∂H1 (x)) ⊕pa sc(µ)) sc(a.µ, y) = a.sc(µ) sc(a.µ, b.ν + y) = 0

if pa > 0, H = {b | pb < pa } if pa = 0 if pb < pa

sc(0, y) = 0 sc(µ1 ⊕p µ2 , ν) = sc(µ1 , ν) ⊕p sc(µ2 , ν) sc(µ, ν1 ⊕p ν2 ) = sc(µ, ν1 ) ⊕p sc(µ, ν2 ) sc(δ(x), δ(y)) = δ(sc(x, y)) sc(δ(x), δ(y)) = δ(sc(x, y)) 9 / 11

Axiomatization of a non-smooth operator a

x− →µ a

→ sc(µ) sc(x, y) −

a

(pa = 0)

b

x− → µ {y −→ ̸ | pb < pa } a

→ δ(y) ⊕pa sc(µ) sc(x, y) −

(pa > 0)

sc(x) = sc(x, x) sc(x1 + x2 , y) = sc(x1 , y) + sc(x2 , y) sc(a.µ, ∂H1 (x)) = a.(δ(∂H1 (x)) ⊕pa sc(µ)) sc(a.µ, y) = a.sc(µ) sc(a.µ, b.ν + y) = 0

if pa > 0, H = {b | pb < pa } if pa = 0 if pb < pa

sc(0, y) = 0 sc(µ1 ⊕p µ2 , ν) = sc(µ1 , ν) ⊕p sc(µ2 , ν) sc(µ, ν1 ⊕p ν2 ) = sc(µ, ν1 ) ⊕p sc(µ, ν2 ) sc(δ(x), δ(y)) = δ(sc(x, y)) sc(δ(x), δ(y)) = δ(sc(x, y)) 9 / 11

Axiomatization of a non-smooth operator a

x− →µ a

→ sc(µ) sc(x, y) −

a

(pa = 0)

b

x− → µ {y −→ ̸ | pb < pa } a

→ δ(y) ⊕pa sc(µ) sc(x, y) −

(pa > 0)

sc(x) = sc(x, x) sc(x1 + x2 , y) = sc(x1 , y) + sc(x2 , y) sc(a.µ, ∂H1 (x)) = a.(δ(∂H1 (x)) ⊕pa sc(µ)) sc(a.µ, y) = a.sc(µ) sc(a.µ, b.ν + y) = 0

if pa > 0, H = {b | pb < pa } if pa = 0 if pb < pa

sc(0, y) = 0 sc(µ1 ⊕p µ2 , ν) = sc(µ1 , ν) ⊕p sc(µ2 , ν) sc(µ, ν1 ⊕p ν2 ) = sc(µ, ν1 ) ⊕p sc(µ, ν2 ) sc(δ(x), δ(y)) = δ(sc(x, y)) sc(δ(x), δ(y)) = δ(sc(x, y)) 9 / 11

Axiomatization of a non-smooth operator a

x− →µ a

→ sc(µ) sc(x, y) −

a

(pa = 0)

b

x− → µ {y −→ ̸ | pb < pa } a

→ δ(y) ⊕pa sc(µ) sc(x, y) −

(pa > 0)

sc(x) = sc(x, x) sc(x1 + x2 , y) = sc(x1 , y) + sc(x2 , y) sc(a.µ, ∂H1 (x)) = a.(δ(∂H1 (x)) ⊕pa sc(µ)) sc(a.µ, y) = a.sc(µ) sc(a.µ, b.ν + y) = 0

if pa > 0, H = {b | pb < pa } if pa = 0 if pb < pa

sc(0, y) = 0 sc(µ1 ⊕p µ2 , ν) = sc(µ1 , ν) ⊕p sc(µ2 , ν) sc(µ, ν1 ⊕p ν2 ) = sc(µ, ν1 ) ⊕p sc(µ, ν2 ) sc(δ(x), δ(y)) = δ(sc(x, y)) sc(δ(x), δ(y)) = δ(sc(x, y)) 9 / 11

Perturbation of probabilities and bisimulation equivalence

p.

q.

̸∼

a

a

◦ 0.6

p2 1.0

b



◦ 0.6 − ϵ

0.4

p3 c

q2 1.0



1.0

b



0.4 + ϵ

q3 c

1.0



10 / 11

Perturbation of probabilities and bisimulation equivalence

p.

q.

̸∼

a

a

◦ 0.6

p2 1.0

b



◦ 0.6 − ϵ

0.4

p3 c

q2 1.0



1.0

b



0.4 + ϵ

q3 c

1.0



10 / 11

Perturbation of probabilities and bisimulation equivalence

p.

q.

d(p, q) = ϵ

a

a

◦ 0.6

p2 1.0

b



◦ 0.6 − ϵ

0.4

p3 c

q2 1.0



1.0

b



0.4 + ϵ

q3 c

1.0



10 / 11

Lifting of state metrics to distribution metrics Problem: Given d : S × S → [0, 1] what is an adequate lifted metric ˆ : ∆(S) × ∆(S) → [0, 1]? d . Definition . A matching ω ∈ ∆(S × S) for (π, π ′ ) ∈ ∆(S) × ∆(S) satisfies: ∑ ω(s, s′ ) = π(s) for all s ∈ S, and ′ ∑s ∈S ′ ′ ′ ′ s∈S ω(s, s ) = π (s ) for all s ∈ S. . Discrete transportation problem: π′

π s1.

ω(s1 , s1 )

s1

ω(s1 , s2 )

s2

s2

.. . sn

ω(s1 , s2 )

ω(sn , sn )

.. . sn 11 / 11

Lifting of state metrics to distribution metrics Problem: Given d : S × S → [0, 1] what is an adequate lifted metric ˆ : ∆(S) × ∆(S) → [0, 1]? d . Definition . A matching ω ∈ ∆(S × S) for (π, π ′ ) ∈ ∆(S) × ∆(S) satisfies: ∑ ω(s, s′ ) = π(s) for all s ∈ S, and ′ ∑s ∈S ′ ′ ′ ′ s∈S ω(s, s ) = π (s ) for all s ∈ S. . Discrete transportation problem: π′

π s1.

ω(s1 , s1 )

s1

ω(s1 , s2 )

s2

s2

.. . sn

ω(s1 , s2 )

ω(sn , sn )

.. . sn 11 / 11

Lifting of state metrics to distribution metrics Problem: Given d : S × S → [0, 1] what is an adequate lifted metric ˆ : ∆(S) × ∆(S) → [0, 1]? d . Definition . A matching ω ∈ ∆(S × S) for (π, π ′ ) ∈ ∆(S) × ∆(S) satisfies: ∑ ω(s, s′ ) = π(s) for all s ∈ S, and ′ ∑s ∈S ′ ′ ′ ′ s∈S ω(s, s ) = π (s ) for all s ∈ S. . Discrete transportation problem: π′

π s1.

ω(s1 , s1 )

s1

ω(s1 , s2 )

s2

s2

.. . sn

ω(s1 , s2 )

ω(sn , sn )

.. . sn 11 / 11

Lifting of state metrics to distribution metrics Problem: Given d : S × S → [0, 1] what is an adequate lifted metric ˆ : ∆(S) × ∆(S) → [0, 1]? d . Definition . A matching ω ∈ ∆(S × S) for (π, π ′ ) ∈ ∆(S) × ∆(S) satisfies: ∑ ω(s, s′ ) = π(s) for all s ∈ S, and ′ ∑s ∈S ′ ′ ′ ′ s∈S ω(s, s ) = π (s ) for all s ∈ S. . .

Solution 1: Linear programming

. The Kantorovich pseudometric K(d) : ∆(S) × ∆(S) → [0, 1] is defined for a pseudometric d : S × S → [0, 1] by ∑ K(d)(π, π ′ ) = min ′ d(s, s′ ) · ω(s, s′ ) ω∈Ω(π,π )

s,s′ ∈S

′ .for π, π ∈ ∆(S). 11 / 11