Basic Amino Acids as Green Catalysts for Isomerization of Glucose to Fructose in Water Qiang Yang, Matthew Sherbahn, and Troy Runge* Department of Biological Systems Engineering, University of Wisconsin-Madison, 460 Henry Mall, Madison, WI 53706
SUPPLEMENTARY INFORMATION (PAGES S1-19) CONTENTS (contains 3 schemes, 5 tables and 10 figures) Chemical structures of amino acids………………………………………………………….… S2 Isomerization of glucose by organic amines…………………………………………………….S3 Effects of dosage and reaction temperature on rate constant……………………………………S4 Effect of reaction temperature on rate constant for the isomerization of glucose by lysine…….S5 Estimated equilibrium conversion and constant for glucose isomerization……………………..S6 Isomerization of fructose………………………………………………………………………...S7 Effect of reaction temperature on rate constant and calculated apparent activation energy for fructose isomerization………………………………………………………………………...….S8 Estimated equilibrium conversion and constant for fructose isomerization…………………......S9 Plot of ln κ as a function of 1/Τ for fructose isomerization………………………………….....S10 Magnified NMR spectrum……………………………………………..……………………….S11 Illustration of reaction between amine and water………………………………………………S12 Effect of DL-glyceraldehyde on the isomerization of glucose…………………………………S13 Effects of glyceraldehyde on kinetics and catalytic performance for glucose isomerization…..S14 1 H-13C HSQC NMR spectra of glucose-2-D, glucose, mannose, fructose and arginine……S15-17 Isomerization of glucose or glucose-2-D in D2O and in H2O……………………………………………………………………………………………..S18 Illustration of possible pathways for isomerization, decomposition and condensation reactions………………………………………………………………………………………...S19 *To whom correspondence should be addressed. Tel: 608-890-3143. E-mail:
[email protected] S1
Scheme S1. Chemical structures of arginine (1), lysine (2), histidine (3), 4-guanidinobutyric acid (4), 3-guanidinopropionic acid (5) and guanidineacetic acid (6).
S2
Table S1. Isomerization of Glucose by Organic Amines organic amine
pKa
triethylamine
10.8
morpholine piperazine ethylenediamine piperidine pyrrolidine
8.4 9.8 10.8 11.2 11.3
10 10 10 10 10
100 100 100 100 100
17 28 25 29 29
43 62 60 51 59
imidazole
7.05
160
80 100 120
10 29 33
40 54 55
7.5
80 100 120
12 18 20
41 54 43
3
80 100 120
33 36 30
73 71 51
80 100 120 100
31 32 32 24
65 67 50 56
1-(3-aminopropyl) imidazole
9.63,6.5
tetramethylguanidine
13.6
dosage temp YFru SFru Ref. (mol%) (°C) (%) (%) 120 19 35 12 110 28 56 80 24 45 60 14 52 120 28 49 1 10 100 32 63 80 28 63 5 100 27 61 2 100 23 74
1,5,7-triazabicyclo[4.4.0]dec-5-ene 21
3
tris(2-aminoethyl)amine
3
10.24, 9.43 8.45, 2.60
2
3
Dosage: mol% relative to glucose.
References 1. Carraher, J.M.; Fleitman, C.N.; Tessonnier, J.P. ACS Catal. 2015, 5, 3162-3173. 2. Liu, C.; Carraher, J.M.; Swedberg, J.L.; Herndon, C.R.; Fleitman, C.N; Tessonnier, J.P. ACS Catal. 2014, 4, 4295-4298. 3. Yang, Q.; Zhou, S.F.; Trunge, T. J. Catal. 2015, 330, 474-484.
S3
10% 8% 5%
-7.2
-7.6
ln (k)
-8.0
-8.4
-8.8
-9.2
2.50
2.55
2.60
2.65 3
2.70
2.75
2.80
2.85
-1
10 x 1/T ( K )
Figure S1. Plots of ln κ as a function of 1/Τ under different concentrations for the isomerization of glucose by arginine. Reaction conditions: 10 wt% glucose, 5 mol% or 8 mol% or 10 mol% arginine relative to glucose, 2-20 min, 1 mL H2O, 80-120 °C.
S4
-7.0
-7.2
ln (k)
-7.4
-7.6
-7.8
-8.0
-8.2 2.45
2.50
2.55
2.60 3
2.65
2.70
2.75
2.80
-1
10 x 1/T ( K )
Figure S2. Plot of ln κ as a function of 1/Τ for the isomerization of glucose by lysine. Reaction conditions: 10 wt% glucose, 20 mol% lysine relative to glucose, 2-20 min, 1 mL H2O, 90-130 °C.
S5
Table S2. Estimated Equilibrium Conversion and Constant for Glucose Isomerization by Arginine dosage %
10
8
5
temp
equilibrium constant
equilibrium conversion
(°)
Keq
%
120
0.54
35.1
110
0.42
29.6
100
0.28
21.9
90
0.21
17.3
80
0.17
14.5
120
0.49
32.9
110
0.35
25.9
100
0.27
21.2
90
0.15
13.0
80
0.07
6.5
120
0.38
27.5
110
0.26
20.6
100
0.21
17.3
90
0.12
10.7
80
0.05
4.8
Equilibrium constant (Keq) was calculated from the ratio of [fructose concentration at 15 min]/[glucose concentration at 15 min]. Equilibrium conversion (%) was calculated by the equation: Keq/(1+ Keq) ×100%. S6
12
80 90 100 110 120
20
80 90 100 110 120
9
Glucose yield (%)
Fructose conversion (%)
25
15
10
6
3 5
0
0 0
4
8
12
16
20
0
4
Time (min)
8
12
16
20
Time (min)
Figure S3. Isomerization of fructose by arginine. Reaction conditions: 10 wt% fructose, 8 mol% arginine relative to fructose, 2-20 min, 1 mL H2O, 80-120 °C.
S7
Table S3. Effect of Reaction Temperature on Rate Constant and Calculated Apparent Activation Energy for Fructose Isomerization by Arginine Ea
temp
10-4 × κ
YGlu
SGlu
10-3 × TOF
(kJ.mol-1)
(°C)
(s-1)
(%)
(%)
(molGlu.mol-1Arg.s-1)
120
2.7
10
50
1.38
110
2.3
9
47
1.25
100
1.7
7
54
0.97
90
1.4
5
46
0.69
80
1.0
4
41
0.56
28.7
Reaction conditions: 10 wt% fructose, 8 mol% arginine relative to fructose, 2-20 min, 1 mL H2O, 80-120 °C.
S8
Table S4. Estimated Equilibrium Conversion and Constant for Fructose Isomerization by Arginine
temp
equilibrium constant
equilibrium conversion
(°)
Keq
%
120
0.11
9.9
110
0.11
9.9
100
0.09
8.3
90
0.06
5.7
80
0.06
5.7
Equilibrium constant (Keq) was calculated from the ratio of [glucose concentration at 15 min]/[fructose concentration at 15 min]. Equilibrium conversion (%) was calculated by the equation: Keq/(1+ Keq) ×100%.
S9
-8.2
-8.4
ln (k)
-8.6
-8.8
-9.0
-9.2 2.50
2.55
2.60
2.65
2.70
2.75
2.80
2.85
103 x 1/T ( K-1)
Figure S4. Plot of ln κ as a function of 1/Τ for the isomerization of fructose by arginine. Reaction conditions: 10 wt% fructose, 8 mol% arginine relative to fructose, 2-20 min, 1 mL H2O, 80-120 °C.
S10
20 min
15 min
12 min
10 min
8 min
6 min
4 min
2 min
0 min
Figure S5. Change in intensity of characteristic peak around δ=3.92 ppm attributed to formed fructose during glucose isomerization by arginine.
S11
Scheme S2. Illustration of reaction between amine and water.
S12
30
25
80 90 100 110 120
20
Fructose yield (%)
Glucose conversion (%)
24
80 90 100 110 120
18
12
6
15
10
5
0
0 0
4
8
12
16
20
0
Time (min)
4
8
12
16
20
Time (min)
Figure S6. Effect of DL-glyceraldehyde on the isomerization of glucose by arginine. Reaction conditions: 10 wt% glucose, 8 mol% arginine relative to glucose, 8 mol% DL-glyceraldehyde relative to glucose, 2-20 min, 1 mL H2O, 80-120 °C.
S13
Table S5. Effects of Addition of Glyceraldehyde on Kinetics and Catalytic Performance for Glucose Isomerization by Arginine
temp
10-4 × κ
YFru
SFru
(°C)
(s-1)
(%)
(%)
120
3.1
23
85
110
2.4
14
75
100
1.8
14
91
90
1.4
10
87
80
1.0
7
82
Reaction conditions: 10 wt% glucose, 8 mol% arginine relative to glucose, 8% mol DLglyceraldehyde relative to glucose, 2-20 min, 1 mL H2O, 80-120 °C.
S14
Figure S7. 1H-13C HSQC NMR spectra of glucose-2-D (top) and glucose (bottom).
S15
Figure S8. 1H-13C HSQC NMR spectra of mannose (top) and fructose (bottom).
S16
Figure S9. 1H-13C HSQC NMR spectrum of arginine.
S17
Glucose conversion or fructose yield (%)
Glucose in D2O 40
Glucose in H2O Glucose-2-D in H2O
30
20
10
0 0
5
10
15
20
Time (min)
Figure S10. Isomerization of glucose or glucose-2-D by arginine in D2O and in H2O. Solid line: glucose conversion. Dash line: fructose yield. Reaction conditions: 10 wt% glucose or glucose-2D, 8 mol% arginine relative to glucose or glucose-2-D, 2-20 min, 1 mL H2O or D2O, 120 °C.
S18
Scheme S3. Illustration of possible pathways for isomerization, decomposition and condensation reactions.
S19