23rd IUPAC Conference on Physical Organic Chemistry (ICPOC23) 3rd – 8th July 2016 • Sydney • Australia
Biomaterial interactions with ionic liquids S. Muzammal,a S. Maxwell-Hogg,b D. H. A. T. Gunasekera,a J. Bellamy-Carter,a C. Tuck,a R. D. Wildman,a C. M. Jäger,a P. Licence,b T. G. A. Youngs,c A. K. Croft.a,* a
Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, UK b School of Chemistry, University of Nottingham, Nottingham, UK c ISIS Neutron Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, UK *
[email protected] Ionic liquids are solvents composed of ions. Use of different combinations of ions allows tuning of solvent properties that can be exploited for a wide range of technologies, with advantages conferred from the ionic liquids’ low vapour pressure and low flammability, in terms of process safety; from their ability to dissolve a wide range of materials; and from the entropic control of reactivity.1 In particular, ionic liquids have been used with recalcitrant biomass in order to solubilise it for processing,2 including for new applications such as 3D-printing.3 Proteins and peptides present a significant degree of microscopic complexity and variation. Here we present our latest results, determined from both computational and experimental approaches that include neutron diffraction data, in understanding the organisation of ionic liquids around amino acid and peptide-based substrates, with a view to developing a predictive understanding of these ionic liquid-peptide interactions. These results have future implications for optimising both solubility and reactivity of proteinacious materials in ionic liquids.
Figure 1. Organisation of the ionic liquid ions [C2C1Im]+ (blue) and Cl- (red) around the zwitterionic lysine cation, shown as a spatial distribution function.
References [1] Yau, H. M.; Barnes, S. A.; Hook, J. M.; Youngs, T. G. A.; Croft, A. K.; Harper, J. B. Chem. Commun., 2008, 3576-3578; Yau, H. M.; Howe, A. G.; Hook, J. M.; Croft, A. K.; Harper, J. B. Org. Biomol. Chem., 2009, 7, 3572-3575; Yau, H. M.; Chan, S. J.; George, S. R. D.; Hook, J. M.; Croft, A. K.; Harper, J. B. Molecules, 2009, 14, 2521-2534; Jones, S. G.; Yau, H. M.; Davies, E.; Hook, J. M.; Youngs, T. G. A.; Harper, J. B.; Croft, A. K. Phys. Chem. Chem. Phys., 2010, 12, 1873-1878; Yau, H. M.; Croft, A. K.; Harper, J. B. Faraday Disc., 2012, 154, 365-371; Yau, H. M.; Keaveney, S. T.; Butler, B. J.; Tanner, E. E. L.; Guerry, M. S.; George, S. R. D.; Dunn, M. H.; Croft, A. K.; Harper, J. B. Pure Appl. Chem., 2013, 85, 1979; Tanner, E. E.; Hawker, R. R.; Yau, H. M.; Croft, A. K.; Harper, J. B. Org. Biomol. Chem., 2013, 11, 6107; Keaveney, S. T.; Harper, J. B.; Croft, A. K.; RSC Advances, 2015, 5, 35709-35729. [2] Eshtaya, M.; Ejigu, A.; Stephens, G.; Walsh, D.; Chen, G. Z.; Croft, A. K. Faraday Disc., 2016, doi: 10.1039/C5FD00226E. [3] Gunasekera, D. H. A. T.; Keuk, S.; Hasanaj, D.; He, Y.; Tuck, C.; Croft, A. K.; Wildman, R. D. Faraday Disc., 2016, doi: 10.1039/C5FD00219B.
CLC9