Centralized Versus Decentralized Control - A ... - Infoscience - EPFL

Report 6 Downloads 142 Views
Centralized Versus Decentralized Control - A Solvable Stylized Model in Transportation M.-O. Hongler, O. Gallay, R. Colmorn, P. Cordes and M. Hülsmann Ecole Polytechnique Fédérale de Lausanne (EPFL), (CH) TRANSP-OR Jacobs University - Bremen, (D) Systems Management - International Logistics EURO XXIV Lisbon - July 14th 2010

Olivier Gallay (EPFL)

Centralized Versus Decentralized Control

EURO XXIV, 14/07/2010

1 / 15

Smart Parts Dynamics - A Fashionable Trend in Logistics

Smart Parts Dynamics - A Fashionable Trend in Logistics Highly complex decision issues ⇒ tendency to decentralize the management •

Huge number of control parameters



Feedback (i.e. non-linearity) in the underlying dynamics



Ubiquitous presence of randomness in the dynamics



...

⇓ Decisions based on limited rationality ⇒ Rigid pre-planning offers poor performance mutual interactions



self-organization

Autonomous agents might better perform than an effective central controller



goal of today’s presentation

Exhibit a solvable model showing performance of decentralized control

Olivier Gallay (EPFL)

Centralized Versus Decentralized Control

EURO XXIV, 14/07/2010

2 / 15

Stylized Model for Smart Parts Dynamics

A Simple Model for Competitive Dynamics X(t), Xk (t)) + qk (vk (t))dBk,t , X˙ k (t) = vk (t) + γk Ik (~ | {z } {z } | |{z} velocity

multi−agent interactions

k = 1, 2, ..., N.

noise sources

Multi-agent interactions: Ik (~ X(t), Xk (t)) =

Nk 1 X Ik (Xj (t)), Nk j6=k

8 0 > > > > < Ik (Xj (t)) = 1 > > > > : 0 Olivier Gallay (EPFL)

Nk := neighbourhood of agent k,

if

0 ≤ Xj (t) < Xk (t),

if

Xk (t) ≤ Xj (t) < Xk (t) + U, (U > 0),

if

Xj (t) > Xk (t) + U,

(velocity unchanged), (accelerate),

(velocity unchanged).

(U := "mutual influence" interval) Centralized Versus Decentralized Control

EURO XXIV, 14/07/2010

3 / 15

Stylized Model for Smart Parts Dynamics

A Simple Model for Competitive Dynamics - Applications

Logistics

Economy

Human Mimetism

... Olivier Gallay (EPFL)

Centralized Versus Decentralized Control

EURO XXIV, 14/07/2010

4 / 15

Stylized Model for Smart Parts Dynamics

Homogeneous Population of Agents

i h X(t), Xk (t)) dt dXk (t) = v(t) + γI(~ | {z } := drift field Dk,v (x,t)



+

q dBk,t . | {z }

indep. White Gaussian Noise

diffusion process

Fokker - Planck diffusion equation: X ∂ ˆ ˜ 1 X ∂2 ∂ [P(~x, t)] , Dk,v(~x,t) P(~x, t) + q2 P(~x, t) = − ∂t ∂xk 2 ∂x2k k k P(~x, t) := conditional probability density

Olivier Gallay (EPFL)

Centralized Versus Decentralized Control

EURO XXIV, 14/07/2010

5 / 15

Stylized Model for Smart Parts Dynamics

Mean-Field Dynamics for Homogeneous Agents Nk ≡ N → ∞ ⇒ Mean-Field Dynamics (MFD)

⇓ trajectories point of view N 1 X I(Xj (t)) N j6=k | {z }

dynamics for a representative effective agent

probabilistic point of view

Z



|x

x+U

P(x, t) dx {z }

proportion of representative agents located in [x,x+U]

proportion of velocity−active agents acting on k

⇓ Effective Fokker-Planck equation: » „Z x+U «– ff ∂ ∂ 1 ∂2 P(x, t) = − v(t) + γ P(x, t)dx P(x, t) + q2 2 [P(x, t)] , ∂t ∂x 2 ∂x x {z } | non−linear and non−local field equation

Olivier Gallay (EPFL)

Centralized Versus Decentralized Control

EURO XXIV, 14/07/2010

6 / 15

Stylized Model for Smart Parts Dynamics

Small Influence Region - Burgers’ Equation Dynamics Small values of U ⇒ Taylor expand up to 1st order in U



R x+U x

P(x, t)dx ≃ U P(x, t)

∂ ∂ 1 ∂2 P(x, t) = − {[v(t) + γ U P(x, t)] P(x, t)} + q2 2 [P(x, t)] ∂t ∂x | {z } 2 ∂x non−linear but local drift field

t 7→ τ = γt



x 7→ z =

R x− 0t v(s) ds 2U

Burgers’ Equation (to be solved with initial condition P(z, t) = δ(z)Θ(z))

˙ t) = P(z,

Olivier Gallay (EPFL)

1 ∂ 2 ∂z



P(z, t)

2



+

h

q2 8U 2 γ

Centralized Versus Decentralized Control

i

∂2 ∂z2

[P(z, t)]

EURO XXIV, 14/07/2010

7 / 15

Stylized Model for Smart Parts Dynamics



Burgers’ Eq.

logarithmic transformation (Hopf - Cole )



Heat Eq.

exact integration

" ` R ´ „ «# e −1 y q2 ∂ √ = − ln 1 + Erfc 4γU 2 ∂y 2 q t 2 3 2 ` R ´ 1 − y2 q t √ e e − 1 R 7 16 πq2 t 6 7 := 1 (e − 1)G(y, t) ” “ 5 (eR −1) R4 R E(y, t) y 1 + 2 Erfc q√ t

=

P(y, t)



=

# !)*

R +,-,")""! U =>0.0004

!)'

R +,-,")! U =>4

!)%

R U =>100 +,-,")&

R +,-,")"% U =>0.64

2 Typical shape of P(y, t) for various R := 4U 2 γ factors q

R U =>16 +,-,")# R U =>1600 +,-,#

!)#

(viewed from the relative moving frame) P (y, t) =! ")* ")'

Normalization and positivity are visually manifest !!

")% ")# " !!

"

!

#

$

%

&

'

(

y

Olivier Gallay (EPFL)

Centralized Versus Decentralized Control

EURO XXIV, 14/07/2010

8 / 15

Stylized Model for Smart Parts Dynamics

Benefit of Competition - Noise Induced Transport Enhancement 1.8

t=0 1.6 1.4

t = 20

1.2 1

P (y, t)

t = 40

0.8

t = 60 0.6 0.4 0.2 0

0

10

20

30

40

50

60

70

traveled distance y

Position probability distribution: without interaction, with interactions 4U √ γt, 3

Additional traveled distance when R =

4γU 2 q2

→ ∞: hX(t)it→∞ ≃

Additional traveled distance when R =

4γU 2 q2

→ 0: hX(t)it→∞ ≃ 0.

Olivier Gallay (EPFL)

Centralized Versus Decentralized Control

EURO XXIV, 14/07/2010

9 / 15

Average Costs Estimation

Optimal Effective Centralized Control Controlled diffusion process: dYt =

c(Y, t) dt | {z }

+ q dBt ,

Y =0 , | 0 {z }

(0 ≤ t ≤ T) ,

initial condition

effective central controller



(Fokker-Planck equation)

∂ q2 ∂ 2 ∂ Pc (y, t) = − [c(y, t)Pc (y, t)] + Pc (y, t) ∂t ∂y 2 ∂y2

Construct a drift controller c(Y, t) which, for time T, fulfills Pc (y, T) | {z }

=

Prob. density with central controller

Olivier Gallay (EPFL)

P(y, T) | {z }

Prob. density due to agent interactions Burgers’ exact solution

Centralized Versus Decentralized Control

EURO XXIV, 14/07/2010

10 / 15

Average Costs Estimation

Optimal Effective Centralized Control (continued) Introduce a utility function Jcentral,T [c(y, t; T)] defined as:

Jcentral,T [c(y, t; T)] = h

Z

T 0

c2 (y, s; T) ds i, 2q2 | {z }

cost rate ρ(y,s)

(h·i := average over the realization of underlying stochastic process)

————————————————————————— Optimal Control Problem Construct an

optimal drift | {z }

c∗ (y, t; T)

such that:

i.e. yielding minimal cost

Jcentral,T [c∗ (y, t; T)] ≤ Jcentral,T [c(y, t; T)]

Olivier Gallay (EPFL)

Centralized Versus Decentralized Control

EURO XXIV, 14/07/2010

11 / 15

Average Costs Estimation

The Dai Pra Solution of the Optimal Control Problem Optimal drift controller: c∗ (y, t; T) = h(y, t) =

Z

R

∂ ∂y

ln [h(y, t)] ,

G [(z − y), (T − t)]

P(z, T) dz. G(z, t)

Paolo Dai Pra, "A Stochastic Control Approach to Reciprocal Diffusion Processes", Appl. Math. Optim. 23, (1991), 313-329.

———————————————————— Minimal cost:

Jcentral,T [c∗ (y, t; T)] =

N · |{z}

D(P|G) | {z }

♯ population Kullback−Leibler

Olivier Gallay (EPFL)

=

8 > < 0

> : N R + N ln 2

Centralized Versus Decentralized Control

h

(eR −1) R

i

for

t = 0,

for

t > 0.

EURO XXIV, 14/07/2010

12 / 15

Average Costs Estimation

Decentralized Agent Control - Cost Estimation Cost Jagents,T for decentralized evolution during time horizon T: Z T Jagents,T := N · Φ(s) , ·ρ ds |{z} |{z} 0 ♯ population

interacting agents

kinetic energy



z }| { γ 2 U 2 /2 ρ= := individual cost rate function, q2 |{z} diffusion rate



Φ(t) ∈ [0, 1] := proportion of interacting agents at time t.

******************************************************************************** Cost upper-bound, reached when Φ(t) ≡ 1

⇓ Jagents,T ≤ NρT Olivier Gallay (EPFL)

Centralized Versus Decentralized Control

EURO XXIV, 14/07/2010

13 / 15

Average Costs Estimation

Costs Comparison - Centralized vs Decentralized

cumulative costs upper-bounded decentralized costs actual decentralized costs

Kullback-Leibler entropy

centralized costs

0

Olivier Gallay (EPFL)

T < Tc time horizons for which agent interactions beat the optimal effective centralized controller

Centralized Versus Decentralized Control

time horizon T

EURO XXIV, 14/07/2010

14 / 15

Conclusion

To Summarize and to Somehow "Philosophically" Conclude

The stylized model cartoons basic and somehow "universal" features:



Agents’ mimetic interactions produce an emergent structure - (here a "shock"- like wave),



Competition enhances global transport flow -



Self-organization via autonomous agents interactions can reduce costs.

Olivier Gallay (EPFL)

(here a



t-increase of the traveled distance),

Centralized Versus Decentralized Control

EURO XXIV, 14/07/2010

15 / 15