chapter 44 compound angles AWS

Report 104 Downloads 156 Views
CHAPTER 44 COMPOUND ANGLES EXERCISE 182 Page 488

1. Reduce the following to the sine of one angle: (a) sin 37° cos 21° + cos 37° sin 21° (b) sin 7t cos 3t – cos 7t sin 3t

(a) sin(A + B) = sin A cos B + cos A sin B Hence, sin 37° cos 21° + cos 37° sin 21° = sin(37° + 21°) = sin 58° (b) sin(A + B) = sin A cos B + cos A sin B Hence, sin 7t cos 3t – cos 7t sin 3t = sin(7t – 3t) = sin 4t

2. Reduce the following to the cosine of one angle: (a) cos 71° cos 33° – sin 71° sin 33° (b) cos

π 3

cos

π 4

+ sin

π 3

sin

π 4

(a) cos(A + B) = cos A cos B – sin A sin B Hence, cos 71° cos 33° – sin 71° sin 33° = sin(71° + 33°) = cos 104° (b) cos(A – B) = cos A cos B + sin A sin B Hence, cos

3. Show that: and

π 3

cos

π 4

+ sin

(a) sin (x + (b) – sin(

π 3

π 3

sin

π π  π  = cos  −  = cos   4 3 4  12 

π

) + sin (x +

2π ) = 3 cos x 3

3π – φ) = cos φ 2

2π  2π 2π π π π   (a) L.H.S. = sin  x +  + sin  x += + cos x sin  sin x cos + cos x sin + sin x cos 3 3  3 3 3 3  

729

© 2014, John Bird

 3  3 1  1 = sin x   + cos x   + sin x  −  + cos x    2  2  2   2   3 = 2 =  2  cos x  

3 cos x = R.H.S.

The diagram below shows an equilateral triangle ABC of side 2 with each angle 60°. Angle A is bisected. By Pythagoras, AD = 22 − 12 =3 . Hence, sin

π 3

= sin 60° =

3 1 and cos 60° = 2 2

3π  3π   3π  (b) L.H.S. = − sin  −φ  = − sin cos φ − cos sin φ  2 2  2    = − [ (−1) cos φ − (0) sin φ ] = cos φ = R.H.S.

4. Prove that: (a) sin(θ + and

(b)

π 4

) – sin(θ –

3π )= 4

2 (sin θ + cos θ)

cos(270° + θ ) = tan θ cos(360° − θ )

π 3π   π π  3π 3π    (a) L.H.S. = sin  θ +  − sin  θ= − − cos θ sin   sin θ cos + cos θ sin  −  sin θ cos  4 4   4 4  4 4      1   1    1   1  = sin θ   + cos θ    − sin θ  −  − cos θ   2  2  2     2  

=

1 θ] [sin θ + cos θ + sin θ + cos= 2

=

2 (sin θ + cos θ ) = R.H.S.

2 ( sin θ + cos θ ) 2

The diagram below shows an isosceles triangle where AB = BC = 1 and angles A and C are both 45°. By Pythagoras, AC = 12 + 12 =2 . Hence, sin

730

π 4

= sin 45° = cos 45°=

1 2

© 2014, John Bird

cos ( 270° + θ ) cos 270° cos θ − sin 270° sin θ 0 − (−1) sin θ (b) L.H.S. = = = cos ( 360° − θ ) cos 360° cos θ + sin 360° sin θ (1) cos θ + 0 =

sin θ = tan θ = R.H.S. cos θ

5. Given cos A = 0.42 and sin B = 0.73 evaluate: (a) sin (A – B), (b) cos (A – B), (c) tan (A + B), correct to 4 decimal places.

Since cos A = 0.42 then A = cos −1 0.42 = 65.17° Thus sin A = sin 65.17° = 0.9075 and tan A = tan 65.17° = 2.1612 Since sin B = 0.73, B = sin −1 0.73 = 46.89° Thus cos B = cos 46.89° = 0.6834 and tan B = tan 46.89° = 1.0682 (a) sin(A – B) = sin A cos B – cos A sin B = (0.9075)(0.6834) – (0.42)(0.73) = 0.6202 – 0.3066 = 0.3136 (b) cos(A – B) = cos A cos B + sin A sin B = (0.42)(0.6834) + (0.9075)(0.73) = 0.2870 + 0.6625 = 0.9495 (c) tan(A + B) =

(2.1612) + (1.0682) tan A + tan B 3.2294 = = = –2.4678 −1.3086 1 − tan A tan B 1 − (2.1612)(1.0682)

6. Solve for values of θ between 0° and 360°: 3 sin(θ + 30°) = 7 cos θ 3 sin(θ + 30°) = 3[sin θ cos 30° + cos θ sin 30°]

from the formula for sin (A + B)

= 3[sin θ (0.8660) + cos θ (0.50)] = 2.5980 sin θ + 1.50 cos θ Since 3 sin(θ + 30°) = 7 cos θ then 2.5980 sin θ + 1.50 cos θ = 7 cos θ 731

© 2014, John Bird

Rearranging gives: 2.5980 sin θ = 7 cos θ – 1.50 cos θ = 5.50 cos θ sin θ 5.50 = = 2.1170 cos θ 2.5980

and

tan θ = 2.1170 and θ = tan −1 2.1170 = 64.72° or 244.72° since tangent is positive in the 1st

i.e.

and 3rd quadrants Hence, the solution of 3 sin(θ + 30°) = 7 cos θ for values of θ between 0° and 360° are: θ = 64.72° or 244.72° 7. Solve for values of θ between 0° and 360°: 4 sin(θ – 40°) = 2 sin θ 4 sin(θ – 40°) = 2 sin θ i.e.

4[sin θ cos 40° – cos θ sin 40°] = 2 sin θ

i.e.

3.064178 sin θ – 2.57115 cos θ = 2 sin θ

Hence,

1.064178 sin θ = 2.57115 cos θ sin θ 2.57115 = = 2.4160901 cos θ 1.064178

i.e.

tan θ = 2.4160901

and

θ = tan −1 (2.4160901) = 67°31′ and 247°31′ (see diagram below) or θ = 67.52° and 247.52°

732

© 2014, John Bird

EXERCISE 183 Page 492 1. Change 5 sin ωt + 8 cos ωt into the form R sin(ωt ± α) Let 5 sin ωt + 8 cos ωt = R sin(ωt + α) Then 5 sin ωt + 8 cos ωt = R[sin ωt cos α + cos ωt sin α] = (R cos α) sin ωt + (R sin α) cos ωt Equating coefficients of sin ωt gives: 5 = R cos α, from which, cos α =

5 R

Equating coefficients of cos ωt gives: 8 = R sin α, from which, sin α =

8 R

There is only one quadrant where both sin α and cos α are positive, and this is the first, as shown below.

By Pythagoras’s theorem: R =

52 + 82 = 9.433

From trigonometric ratios: α = tan −1 Hence,

8 = 57.99° or 1.012 radians 5

5 sin ωt + 8 cos ωt = 9.433 sin(ωt + 1.012)

2. Change 4 sin ωt – 3 cos ωt into the form R sin(ωt ± α)

Let

4 sin ωt – 3 cos ωt = R sin( ωt + α) = R[sin ωt cos α + cos ωt sin α] = (R cos α) sin ωt + (R sin α) cos ωt

Hence,

4 = R cos α

from which, cos α =

4 R

733

© 2014, John Bird

and

–3 = R sin α

from which, sin α = −

3 R

There is only one quadrant where both cosine is positive and sine is negative, i.e. the 4th quadrant, as shown in the diagram below.

R=

( 42 + 32 )

and α = tan −1

=5

3 = 0.644 rad 4

(make sure your calculator is on radians)

4 sin ωt – 3 cos ωt = 5 sin(ωt – 0.644)

Hence,

3. Change –7 sin ωt + 4 cos ωt into the form R sin(ωt ± α)

Let

–7 sin ωt + 4 cos ωt = R sin( ωt + α) = R[sin ωt cos α + cos ωt sin α] = (R cos α) sin ωt + (R sin α) cos ωt

Hence, and

–7 = R cos α from which, cos α = − 4 = R sin α

7 R

4 R

from which, sin α =

There is only one quadrant where both cosine is negative and sine is positive, i.e. the 2nd quadrant, as shown in the diagram below.

R=

( 7 2 + 42 )

= 8.062

Thus, in the diagram, Hence,

and φ = tan −1

4 = 0.519 rad 7

α = π – 0.519 = 2.622 –7 sin ωt + 4 cos ωt = 8.062 sin( ωt + 2.622) 734

© 2014, John Bird

4. Change –3 sin ωt – 6 cos ωt into the form R sin(ωt ± α) Let –3 sin ωt – 6 cos ωt = R sin(ωt + α) = R {sin ωt cos α + cos ωt sin α] = (R cos α) sin ωt + (R sin α) cos ωt Equating coefficients gives: –3 = R cos α, from which, cos α = – 6 = R sin α, from which, sin α =

and

−3 R

−6 R

There is only one quadrant in which both cosine and sine are negative, i.e. the third quadrant, as shown below.

By Pythagoras, R =

32 + 62 = 6.708

θ = tan −1

and

6 = 63.435° 3

Hence, α = 180° + 63.435° = 243.435° or 4.249 radians Thus,

–3 sin ωt – 6 cos ωt = 6.708 sin(ωt + 4.249)

An angle of 243.435° is the same as –116.565° or –2.034 radians Hence,

–3 sin ωt – 6 cos ωt = 6.708 sin(ωt – 2.034)

5. Solve the following equations for values of θ between 0° and 360°: (a) 2 sin θ + 4 cos θ = 3

(a) Let

(b) 12 sin θ – 9 cos θ = 7

2 sin θ + 4 cos θ = R sin(θ + α) 735

© 2014, John Bird

= R[sin θ cos α + cos θ sin α] = (R cos α) sin θ + (R sin α) cos θ Hence,

2 = R cos α

from which, cos α =

2 R

and

4 = R sin α

from which, sin α =

4 R

There is only one quadrant where both cosine is positive and sine is positive, i.e. the 1st quadrant, as shown in the diagram below

R= Hence,

( 42 + 22 )

= 4.472

and

4 = 63.43° 2

2 sin θ + 4 cos θ = 4.472 sin(θ + 63.43°)

Thus, since 2 sin θ + 4 cos θ = 3 i.e.

α = tan −1

sin(θ + 63.43°) =

then

4.472 sin(θ + 63.43°) = 3

3 = 0.67084 4.472

and

θ + 63.43° = sin −1 0.67084 = 42.13° or 180° – 42.13° = 137.87°

Thus,

θ = 42.13° – 63.43° = – 21.30° ≡ 360° – 21.30° = 338.70°

or

θ = 137.87° – 63.43° = 74.44°

i.e. (b) Let

θ = 74.44° and 338.70° satisfies the equation 2 sin θ + 4 cos θ = 3 12 sin θ – 9 cos θ = R sin(θ + α) = R[sin θ cos α + cos θ sin α] = (R cos α) sin θ + (R sin α) cos θ 12 R

Hence,

12 = R cos α

from which, cos α =

and

–9 = R sin α

from which, sin α = −

9 R

There is only one quadrant where both cosine is positive and sine is negative, i.e. the 4th quadrant, as shown in the diagram below.

736

© 2014, John Bird

R= Hence,

(122 + 92 )

= 15

and

sin(θ – 36.87°) =

15 sin(θ – 36.87°) = 7

then 7 15

7 = 27.82° or 15

and

θ – 36.87° = sin −1

Thus,

θ = 27.82° + 36.87° = 64.69°

i.e.

9 = 36.87° 12

12 sin θ – 9 cos θ = 15 sin(θ – 36.87°)

Thus, since 12 sin θ – 9 cos θ = 7 i.e.

α = tan −1

or

180° – 27.82° = 152.18°

θ = 152.18° + 36.87° = 189.05°

θ = 64.69° and 189.05° satisfies the equation 12 sin θ – 9 cos θ = 7

6. Solve the following equations for 0° < A < 360°: (a) 3 cos A + 2 sin A = 2.8

(a) Let

(b) 12 cos A – 4 sin A = 11

3 cos A + 2 sin A = R sin(A + α) = R[sin A cos α + cos A sin α] = (R cos α) sin A + (R sin α) cos A

Hence,

2 = R cos α

from which, cos α =

2 R

and

3 = R sin α

from which, sin α =

3 R

There is only one quadrant where both sine and cosine are positive, i.e. the 1st quadrant, as shown in the diagram below

737

© 2014, John Bird

R=

( 22 + 32 )

Hence,

and α = tan −1

3 = 56.31° 2

3 cos A + 2 sin A = 3.606 sin(A + 56.31°)

Thus, since i.e.

= 13 = 3.606

3 cos A + 2 sin A = 2.8

then

3.606 sin(A + 56.31°) = 2.8

2.8 = 0.776580... 13

sin(A + 56.31°) =

and

A + 56.31° = sin −1 0.776580... = 50.95° or 180° – 50.95° = 129.05°

Thus,

θ = 50.95° – 56.31° = –5.36° ≡ 360° – 5.36° = 354.64°

or

θ = 129.05° – 56.31° = 72.74° θ = 72.74° and 354.64° satisfies the equation 3 cos A + 2 sin A = 2.8

i.e.

12 cos A – 4 sin A = R sin(A + α)

(b) Let

= R[sin A cos α + cos A sin α] = (R cos α) sin A + (R sin α) cos A Hence,

– 4 = R cos α

from which, cos α =

and

12 = R sin α

from which, sin α =

−4 R

12 R

There is only one quadrant where both sine is positive and cosine is negative, i.e. the 2nd quadrant, as shown in the diagram below

R=

42 + 122 = 12.649 and A = tan −1

12 = 71.565° 4

Hence, α = 180° – 71.565° = 108.435° Thus, 12 cos A – 4 sin A = 12.649 sin(A + 108.435°) = 11 Hence, sin(A + 108.435°) =

11 12.649

from which,

738

© 2014, John Bird

(A + 108.435°) = sin −1

11 = 60.416° or 119.584° 12.649

A = 60.416° – 108.435° = – 48.019° ≡ (– 48.019° + 360°) = 311.98°

Thus or

A = 119.584° – 108.435° = 11.15°

The solutions are thus A = 11.15° or 311.98°, which may be checked in the original equation 7. Solve the following equations for values of θ between 0° and 360°: (a) 3sin θ + 4 cos θ = 3

(b) 2 cos θ + sin θ = 2

3sin θ + 4 cos θ = R sin(θ + α)

(a) Let

= R[sin θ cos α + cos θ sin α] = (R cos α) sin θ + (R sin α) cos θ Hence,

3 = R cos α

from which, cos α =

3 R

and

4 = R sin α

from which, sin α =

4 R

There is only one quadrant where both sine and cosine are positive, i.e. the 1st quadrant, as shown in the diagram below

R=

( 32 + 42 )

Hence, Thus, since i.e.

=5

and α = tan −1

4 = 53.13° 3

3sin θ + 4 cos θ = 5 sin(A + 53.13°) 3sin θ + 4 cos θ = 3 then

sin(A + 53.13°) =

5 sin(A + 53.13°) = 3

3 = 0.60 5

and

θ + 53.13° = sin −1 0.60 = 36.87° or 180° – 36.87° = 143.13°

Thus,

θ = 36.87° – 53.13° = – 16.26° ≡ 360° – 16.26° = 343.74° 739

© 2014, John Bird

θ = 143.13° – 53.13° = 90°

or

θ = 90° and 343.74° satisfies the equation 3sin θ + 4 cos θ = 3

i.e.

2 cos θ + sin θ = R sin(θ + α)

(b) Let

= R[sin θ cos α + cos θ sin α] = (R cos α) sin θ + (R sin α) cos θ Hence,

1 = R cos α

from which, cos α =

1 R

and

2 = R sin α

from which, sin α =

2 R

There is only one quadrant where both sine is positive and cosine is negative, i.e. the 2nd quadrant, as shown in the diagram below.

R = 12 + 22 = 2.236 and α = tan −1

2 = 63.43° 1

Thus, 2 cos θ + sin θ = 2.236 sin(θ + 63.43°) = 2 Hence, sin(θ + 63.43°) = (θ + 63.43°) = sin Thus or

2 2.236

−1

from which,

2 = 63.435° or 116.565° 2.236

θ = 63.435° – 63.43° = 0 θ = 116.565° – 63.43° = 53.14°

The solutions are thus θ = 0° or 53.14°, which may be checked in the original equation 8. Solve the following equations for values of θ between 0° and 360°: (a) 6 cos θ + sin θ = 3

(a) Let

(b) 2sin 3θ + 8cos 3θ = 1

sin θ + 6 cos θ = R sin(θ + α) 740

© 2014, John Bird

= R[sin θ cos α + cos θ sin α] = (R cos α) sin θ + (R sin α) cos θ Hence,

1 = R cos α

from which, cos α =

1 R

and

6 = R sin α

from which, sin α =

6 R

There is only one quadrant where both cosine is positive and sine is positive, i.e. the 1st quadrant, as shown in the diagram below.

R=

= 6.083

α = tan −1

and

6 = 80.54° 1

sin θ + 6 cos θ = 6.083 sin(θ + 80.54°)

Hence, Thus, since i.e.

(12 + 62 )

sin θ + 6 cos θ =

3

sin(θ + 80.54°) =

6.083 sin(θ + 80.54°) =

then

3

3 = 0.284736... 6.083

and

θ + 80.54° = sin −1 0.284736... = 16.54° or 180° – 16.54° = 163.44°

Thus,

θ = 16.54° – 80.54° = –64° ≡ 360° –64° = 296°

or

θ = 163.44° – 80.54° = 82.90°

i.e. (b) Let

θ = 82.90° and 296° satisfies the equation 2 sin θ + 4 cos θ = 3 2sin 3θ + 8cos 3θ = R sin(3θ + α)

= R[sin 3θ cos α + cos 3θ sin α] = (R cos α) sin 3θ + (R sin α) cos 3θ Hence,

2 = R cos α

from which, cos α =

and

8 = R sin α

from which, sin α =

2 R 8 R

There is only one quadrant where both cosine is positive and sine is positive, i.e. the 1st quadrant, as shown in the diagram below 741

© 2014, John Bird

R=

( 2 2 + 82 )

=

68

α = tan −1

and

2 sin 3θ + 8 cos 3θ =

Hence,

Thus, since 2 sin 3θ + 8 cos 3θ = 1 sin(3θ + 75.96°) =

i.e.

8 = 75.96° 2

68 sin(3θ + 75.96°) 68 sin(3θ + 75.96°) = 1

then

1 68

1 = 6.97° or 68

and

3θ + 75.96° = sin −1

Thus,

3θ = 6.97° – 75.96° = –68.99° = 291.01°

180° – 6.93° = 173.03° or

3θ = 173.03° – 75.96° = 97.07°

i.e.

3θ = 291.01° or 291.01° + 360° = 651.01° or 651.01° + 360° = 1011.01°

and

3θ = 97.07° or 97.07° + 360° = 457.07° or 457.07° + 360° = 817.07°

Hence,

θ=

291.01° = 97° or 3

and

θ=

97.07° = 32.36° or 3

Thus,

651.01° = 217° or 3

1011.01° = 337° 3

457.07° = 152.36° or 3

817.07° = 272.36° 3

θ = 32.36°, 97°, 152.36°, 217°, 272.36° and 337° all satisfy the equation 2sin 3θ + 8cos 3θ = 1

9. The third harmonic of a wave motion is given by 4.3 cos 3θ – 6.9 sin 3θ. Express this in the form R sin(3θ ± α).

Let

4.3 cos 3θ – 6.9 sin 3θ = R sin(3θ + α) = R[sin 3θ cos α + cos 3θ sin α] = (R cos α) sin 3θ + (R sin α) cos 3θ

Hence,

–6.9 = R cos α

from which, cos α = −

742

6.9 R

© 2014, John Bird

4.3 = R sin α

and

from which, sin α =

4.3 R

There is only one quadrant where both cosine is negative and sine is positive, i.e. the 2nd quadrant, as shown in the diagram below.

R=

( 6.92 + 4.32 )

= 8.13

and

φ = tan −1

4.3 = 31°56′ 6.9

α = 180° – 31°56′ = 148°4′ = 2.584 rad

and

4.3 cos 3θ – 6.9 sin 3θ = 8.13 sin(3θ + 2.584)

Hence,

10. The displacement x metres of a mass from a fixed point about which it is oscillating is given by: x = 2.4 sin ωt + 3.2 cos ωt, where t is the time in seconds. Express x in the form R sin(ωt + α).

Let

x = 2.4 sin ωt + 3.2 cos ωt = R sin( ωt + α) = R[sin ωt cos α + cos ωt sin α] = (R cos α) sin ωt + (R sin α) cos ωt

Hence,

2.4 = R cos α

from which, cos α =

2.4 R

and

3.2 = R sin α

from which, sin α =

3.2 R

There is only one quadrant where both cosine is positive and sine is positive, i.e. the 1st quadrant, as shown in the diagram below

743

© 2014, John Bird

R=

( 2.42 + 3.22 )

= 4.0

and

α = tan −1

3.2 = 53.13° or 0.927 rad 2.4

x = 2.4 sin ωt + 3.2 cos ωt = 4.0 sin( ωt + 0.927) m

Hence,

11. Two voltages, v 1 = 5 cos ωt and v2 = –8 sin ωt are inputs to an analogue circuit. Determine an expression for the output voltage if this is given by (v 1 + v 2 ). v 1 + v2 = 5 cos ωt + (–8 sin ωt) = 5 cos ωt – 8 sin ωt 5 cos ωt – 8 sin ωt = R sin(ωt + α) = R [sin ωt cos α + cos ωt sin α]

Let

Equating coefficients gives:

= (R cos α) sin ωt + (R sin α) cos ωt 5 5 = R sin α, from which, sin α = R

– 8 = R cos α, from which, cos α =

and

−8 R

There is only one quadrant in which both sine is positive and cosine is negative, i.e. the second, as shown below

By Pythagoras, R =

82 + 52 = 9.434 and θ = tan −1

5 = 32.01° 8

Hence, α = 180° – 32.01° = 147.99° = 2.583 rad Thus,

v1 + v 2 = 5 cos ωt – 8 sin ωt = 9.434 sin(ωt + 2.583)

12. The motion of a piston moving in a cylinder can be described by: x = (5 cos 2t + 5 sin 2t) cm Express x in the form R sin(ωt + α).

Let

5 cos 2t + 5 sin 2t = R sin(2t + α) = R [sin 2t cos α + cos 2t sin α] = (R cos α) sin 2t + (R sin α) cos 2t 744

© 2014, John Bird

Equating coefficients gives:

and

5 = R sin α, from which, sin α =

5 R

5 = R cos α, from which, cos α =

5 R

There is only one quadrant in which both sine and cosine are positive, i.e. the 1st, as shown below

By Pythagoras, R =

Thus,

52 + 52 = 7.07 and α = tan −1

5 π = 45° = rad 5 4

π  x = (5 cos 2t + 5 sin 2t) cm = 7.07 sin  2t +  cm 4 

745

© 2014, John Bird

EXERCISE 184 Page 493

1. The power p in an electrical circuit is given by p =

v2 . Determine the power in terms of V, R and R

cos 2t when v = V cos t

v2 Power p= = R

cos t ) (V= 2

R

V 2 cos 2 t V 2 = cos 2 t R R

One of the formulae for the cosine of the double angle is: cos 2t = 2 cos 2 t − 1 2t cos=

from which,

Hence, power p =

1 (1 + cos 2t ) 2

V2 V2 1  V2 = cos 2 t (1 + cos 2t )  (1 + cos 2t )  = R R 2  2R

2. Prove the following identities: (a) 1 –

(c)

cos 2φ = tan2 ϕ cos 2 φ

(b)

2 (tan 2 x)(1 + tan x) = tan x 1 − tan x

(a) L.H.S. = 1 −

1 + cos 2t = 2 cot2 t sin 2 t

(d) 2 cosec 2θ cos 2θ = cot θ – tan θ

 cos 2 φ − sin 2 φ   cos 2 φ sin 2 φ  cos 2φ 1−  1−  = = −   cos 2 φ cos 2 φ    cos 2 φ cos 2 φ  = 1– (1 − tan 2 φ ) = tan 2 φ = R.H.S.

(b) L.H.S. =

1 + cos 2t 1 + ( 2 cos 2 t − 1) 2 cos 2 t = = = 2 cot 2 t = R.H.S. sin 2 t sin 2 t sin 2 t

 2 tan x  (1 + tan x ) tan 2 x )(1 + tan x )  1 − tan 2 x  ( (c) L.H.S. = = = tan x tan x

( 2 tan x )(1 + tan x ) (1 − tan x )(1 + tan x ) tan x

2 tan x (1 − tan x ) = 2 tan x 2 = = R.H.S. = tan x tan x (1 − tan x ) 1 − tan x

746

© 2014, John Bird

 2 (d) L.H.S. = 2 cosec 2θ cos 2θ =   sin 2θ

=

2  = = 2θ ) 2 cot 2θ =  (cos tan 2θ 

2 (1 − tan 2 θ ) 2 tan θ

=

2 2 tan θ 1 − tan 2 θ

1 − tan 2 θ 1 = − tan θ = cot θ − tan θ = R.H.S. tan θ tan θ

3. If the third harmonic of a waveform is given by V3 cos 3θ, express the third harmonic in terms of the first harmonic cos θ, when V3 = 1 When V3 = 1, V3 cos 3θ = cos 3θ = cos(2θ + θ) = cos 2θ cos θ – sin 2θ sin θ = ( 2 cos 2 θ − 1) (cos θ ) − ( 2sin θ cos θ ) (sin θ ) = 2 cos3 θ − cos θ − 2 cos θ sin 2 θ = 2 cos3 θ − cos θ − 2 cos θ (1 − cos 2 θ ) = 2 cos3 θ − cos θ − 2 cos θ + 2 cos3 θ i.e.

cos 3θ = 4 cos3 θ − 3cos θ

4. Solve for θ in the range −180° ≤ θ ≤ 180° : cos 2θ = sin θ then 1 − 2sin 2 θ = sin θ

If cos 2θ = sin θ Rearranging gives:

2sin 2 θ + sin θ − 1 =0

which is a quadratic equation in sin θ (2 sin θ – 1)(sin θ + 1) = 0

Solving by quadratic formula or by factorizing: 1 2

from which,

sin θ =

or sin θ = –1 then

from which,

θ = 30° or 150° or 270°

Since the required range is −180° ≤ θ ≤ 180° then

θ = 30° or 150° or –90°

5. Solve for θ in the range −180° ≤ θ ≤ 180° : 3sin 2θ + 2 cos θ = 0 Since 3sin 2θ + 2 cos θ = 0 then 3(2 sin θ cos θ) + 2 cos θ = 0 747

© 2014, John Bird

6 sin θ cos θ + 2 cos θ = 0

i.e.

2 cos θ(3 sin θ + 1) = 0

Factorizing gives: Hence,

either

2 cos θ = 0 or cos θ = 0

i.e.

(3 sin θ + 1) = 0 sin θ = −

or

 1 or = θ sin −1  −  = 199.47° and 340.53°  3

θ = cos −1 0 = 90° and 270°

Thus,

Hence, in the range −180° ≤ θ ≤ 180° :

1 3

θ = 90°, – 90°, – 19.47° and – 160.47°

6. Solve for θ in the range −180° ≤ θ ≤ 180° : sin 2θ + cos θ = 0 2sin θ cos θ + cos θ = 0

Since sin 2θ + cos θ = 0 then

cos θ(2 sin θ + 1) = 0

i.e. from which,

cos θ = 0 or

2 sin θ + 1 = 0

i.e.

cos θ = 0 or

sin θ = −

Thus,

1 2

θ = 90° or 270° or 210° or 330°

However, in the required range of −180° ≤ θ ≤ 180° :

θ = 90° or – 90° or – 150° or – 30°

7. Solve for θ in the range −180° ≤ θ ≤ 180° : cos 2θ + 2sin θ = −3 Since cos 2θ + 2sin θ = −3 then

2sin 2 θ − 2sin θ − 4 = 0

Rearranging gives:

sin 2 θ − sin θ − 2 = 0

or

(sin θ – 2)(sin θ + 1) = 0

Factorizing gives: from which, i.e. Hence,

−3 (1 − 2sin 2 θ ) + 2sin θ =

either

(sin θ – 2) = 0

sin θ = 2 (which has no solution)

or

(sin θ + 1) = 0

or sin θ = –1

θ = sin −1 (−1) = 270°

i.e. in the range −180° ≤ θ ≤ 180° :

θ = –90° 748

© 2014, John Bird

8. Solve for θ in the range −180° ≤ θ ≤ 180° : tan θ + cot θ = 2

Since tan θ + cot θ = 2 then

sin θ cos θ + = 2 cos θ sin θ

Multiplying each term by sin θ cos θ gives:

( sin θ cos θ ) Cancelling gives: Now

sin θ cos θ + ( sin θ cos θ ) = 2 ( sin θ cos θ ) cos θ sin θ

sin 2 θ + cos 2 θ = 2sin θ cos θ

sin 2 θ + cos 2 θ = 1 and

Hence, from which, Hence, In the range −180° ≤ θ ≤ 180° :

2sin θ cos θ = sin 2θ

1 = sin 2θ 2θ = sin −1 1 = 90° or 90° + 360° = 450°

θ=

90° 450° = 45° or = 225° 2 2

θ = 45° or –135°

749

© 2014, John Bird

EXERCISE 185 Page 495

1. Express sin 7t cos 2t as a sum or difference.

1 [sin(7t + 2t ) + sin(7t − 2t )] 2

sin 7t cos 2t =

from (1), page 494

1 [sin 9t + sin 5t ] 2

=

2. Express cos 8x sin 2x as a sum or difference.

1 [sin(8 x + 2 x) − sin(8 x − 2 x)] 2

cos 8x sin 2x = =

from (2), page 494

1 [sin10 x − sin 6 x ] 2

3. Express 2 sin 7t sin 3t as a sum or difference.

 1 2 sin 7t sin 3t = (2)  −  [ cos(7t + 3t ) − cos(7t − 3t ) ]  2 = − [ cos10t − cos 4t ]

or

from (4), page 494

cos 4t – cos 10t

4. Express 4 cos 3θ cos θ as a sum or difference.

1  4 cos 3θ cos θ = 4  [ cos(3θ + θ ) + cos(3θ − θ ) ] 2 

from (3), page 494

= 2[cos 4θ + cos 2θ]

5. Express 3 sin

3 sin

π 3

cos

π 3

cos

π 6

as a sum or difference.

π

1  π π   π π  = (3) sin  +  + sin  −   6 2 3 6  3 6  =

from (1), page 494

3 π π sin + sin 2  2 6  750

© 2014, John Bird

∫ 2sin 3t cos t d t

6. Determine

1  2 sin 3t cost = 2  [sin(3t + t ) + sin(3t − t ) ] 2 

from (1), page 494

= sin 4t + sin 2t Hence,

= t d t ∫ ( sin 4t + sin 2t ) d t ∫ 2sin 3t cos

7. Evaluate



π /2 0

=−

cos 4t cos 2t 1 1 − + c or − cos 4t − cos 2t + c 4 2 4 2

4 cos 5 x cos 2 x d x

1  4 cos 5 x= cos 2 x 4  [ cos(5 x + 2 x) + cos(5 x − 2 x) ] 2  = 2[cos 7x + cos 3x] Hence,



π /2 0

4 cos 5= x cos 2 x d x



π /2 0

2(cos 7 x + cos 3 x) d x π /2

 2sin 7 x 2sin 3x  = + 3  0  7

7π 2 3π 2 + sin =  sin 2 3 2 7

2  2   −  sin 0 + sin 0  3  7 

20  2 2 =  − −  − (0) = − 21  7 3

8. Solve the equation: 2 sin 2φ sin φ = cos φ in the range φ = 0 to φ = 180° 2 sin 2φ sin φ = cos φ i.e.

2(2 sin φ cos φ) sin φ = cos φ

i.e.

4sin 2 φ cos φ = cos φ

i.e. and Hence,

4sin 2 φ cos φ − cos φ = 0 cos φ ( 4sin 2 φ − 1) = 0

cos φ = 0

from which,

φ = cos −1 0 = 90°

751

© 2014, John Bird

1 4

and sin φ =

and

4sin 2 φ = 1

Hence,

φ = sin −1 0.5 = 30° and 150° (see diagram below)

and

φ = sin −1 (−0.5) = 210° and 330°

from which, sin 2 φ =

1 = ±0.5 4

Since the range is from φ = 0° to φ = 180°, then the only values of φ to satisfy: 2 sin 2φ sin φ = cos φ are:

φ = 30°, 90° and 150°

752

© 2014, John Bird

EXERCISE 186 Page 496

1. Express sin 3x + sin x as products.

 3x + x   3x − x  sin 3x + sin x = 2sin   cos    2   2 

from (5), page 495

= 2 sin 2x cos x

2. Express

1 (sin 9θ – sin 7θ) as products. 2

1 1  9θ + 7θ (sin 9θ – sin 7θ) = (2) cos  2 2  2

  9θ − 7θ   sin     2 

from (6), page 495

= cos 8θ sin θ

3. Express cos 5t + cos 3t as products.

 5t + 3t   5t − 3t  cos 5t + cos 3t = 2 cos   cos    2   2 

from (7), page 495

= 2 cos 4t cos t

4. Express

1 (cos 5t – cos t) as products. 8

1 1  5t + t   5t − t  (cos 5t – cos t) =   (−2) sin   sin   8 8  2   2 

from (8), page 495

1 = − sin 3t sin 2t 4

5. Express

1 π π (cos + cos ) as products . 2 3 4

 π π   π π  +     3 − 4   1 π π  1 3 4 2 cos   cos    cos + cos  = 2 3 4 2  2   2        753

from (7), page 495

© 2014, John Bird

 7π  = cos  12  2 

6. Show that:(a)

(b)

 π    12  7π π cos  cos   = cos 24 24   2    

sin 4 x − sin 2 x = tan x cos 4 x + cos 2 x 1 2

{

sin(5x – α) – sin(x + α)

} = cos 3x sin(2x – α)

 4x + 2x   4x − 2x  2 cos   sin   sin 4 x − sin 2 x 2   2   (a) L.H.S. = = cos 4 x + cos 2 x  4x + 2x   4x − 2x  2 cos   cos    2   2  = (b) L.H.S. =

2 cos 3 x sin x sin x = = tan x = R.H.S. 2 cos 3 x cos x cos x

1 { sin(5 x − α ) − sin( x + α ) } 2

=

1 [(sin 5 x cos α − cos 5 x sin α ) − (sin x cos α + cos x sin α )] 2

=

1 [cos α (sin 5 x − sin x) − sin α (cos 5 x + cos x)] 2

=

  1  5x + x   5x − x   5x + x   5 x − x   cos α 2 cos   sin    − sin α 2 cos   cos    2  2   2   2   2    

=

1 [ 2 cos α (cos 3x sin 2 x) − 2sin α (cos 3x cos 2 x)] 2

= cos 3x (cos α sin 2x – sin α cos 2x) = cos 3x (sin 2x cos α – cos 2x sin α) = cos 3x sin(2x – α) = R.H.S. 7. Solve for θ in the range 0° ≤ θ ≤ 180° : cos 6θ + cos 2θ = 0

cos 6θ + cos 2θ = 0 hence

 6θ + 2θ 2 cos   2

i.e.

2 cos 4θ cos 2θ = 0

i.e.

  6θ − 2θ  cos    2

cos 4θ cos 2θ = 0 754

 =0 

from (7), page 495

© 2014, John Bird

Hence, either i.e. i.e. i.e.

cos 4θ = 0 4θ = cos −1 0

or

cos 2θ = 0

or

2θ = cos −1 0

4θ = 90° or 270° or 450° or 630°

or

θ = 22.5° or 67.5° or 112.5° or 157.5°

2θ = 90° or 270° or θ = 45° or 135°

Hence, in the range 0° ≤ θ ≤ 180° : θ = 22.5° or 45° or 67.5° or 112.5° or 135° or 157.5° 8. Solve for θ in the range 0° ≤ θ ≤ 180° : sin 3θ − sin θ = 0

 3θ + θ sin 3θ – sin θ = 2 cos   2

  3θ − θ   sin     2 

from (6), page 495

= 2 cos 2θ sin θ Since sin 3θ − sin θ = 0 then 2 cos 2θ sin θ = 0 Hence,

either cos 2θ = 0

i.e.

either 2θ = cos −1 0 = 90° and 270° from which, θ = 45° and 135°

sin θ = 0

θ = sin −1 0 = 0° and 180°

or Hence,

or

θ = 0°, 45°, 135° and 180° all satisfy the equation sin 3θ − sin θ = 0

9. Solve in the range 0° ≤ θ ≤ 360° : cos 2x = 2 sin x

Since cos 2x = 2 sin x

then

1 − 2sin 2 x = 2sin x 2sin 2 x + 2sin x − 1 =0

Rearranging gives:

Using the quadratic formula gives: sin x =

Hence,

−2 ± 22 − 4(2)(−1) −2 ± 12 = 2(2) 4

= 0.3660254… or –1.3660254… (which has no solution) x = sin 0.3660254... = 21.47° or 158.53° −1

10. Solve in the range 0° ≤ θ ≤ 360° : sin 4t + sin 2t = 0

sin 4t + sin 2t = 0

 4t + 2t   4t − 2t  hence, 2sin   cos  =0  2   2  755

from (5), page 495 © 2014, John Bird

i.e.

2 sin 3t cos t = 0

i.e.

sin 3t cos t = 0

Hence, either i.e. i.e. i.e.

sin 3t = 0 3t = sin −1 0

or or

cos t = 0 t = cos −1 0

3t = 0° or 180° or 360° or 540° or 720° or 900° or 1080°

or

t = 90° or 270°

t = 0° or 60° or 120° or 180° or 240° or 300° or 360° or t = 90° or 270°

Hence, in the range 0° ≤ θ ≤ 360° : θ = 0° or 60° or 90° or 120° or 180° or 240° or 270° or 300° or 360°

756

© 2014, John Bird