CHAPTER 97 INVERSE LAPLACE TRANSFORMS

Report 31 Downloads 698 Views
CHAPTER 97 INVERSE LAPLACE TRANSFORMS EXERCISE 354 Page 1035

1. Determine the inverse Laplace transforms of : (a)

7 s

(b)

2 s −5

7  1  (a) ℒ −1   = 7ℒ −1   = 7(1) = 7 s s  2   1  (b) ℒ −1   = 2ℒ −1   = 2 e5t s − 5 s − 5

2. Determine the inverse Laplace transforms of : (a)

3 2s + 1

(b)

2s s +4 2

       1 3 −1  1  3 − 1t    3  −1 (a) ℒ −1  = 3 ℒ = ℒ = e 2      2 2  2s + 1   2  s + 1     s + 1       2   2  

 2s   s  (b) ℒ −1  = 2ℒ −1   = 2 cos 2t   s 2 + 22   s2 + 4 

3. Determine the inverse Laplace transforms of : (a)

1 s + 25

(b)

4 s +9

5s 2 s + 18

(b)

6 s2

2

2

1 1  5   1  (a) ℒ −1  = ℒ −1  = sin 5t   5 5  s 2 + 25   s 2 + 52  4  4  4 −1  3  (b) ℒ −1  = ℒ  = sin 3t   3  s2 + 9  3  s 2 + 32 

4. Determine the inverse Laplace transforms of : (a)

2

  s 5  5s   s  5 (a) ℒ −1  = 5ℒ −1    = ℒ −1  2 2  = cos 3t 2 2 2  2 s + 18  s +3  2  2 ( s + 9 )  1464

© 2014, John Bird

6 1 (b) ℒ −1   = 6 ℒ −1   = 6t  s2   s2 

5. Determine the inverse Laplace transforms of : (a)

5 s3

(b)

8 s4

5 5  2!  5 (a) ℒ −1   = ℒ −1   = t 2 3 2 2! s   s3  8 8  3!  4 (b) ℒ −1   = ℒ −1   = t 3 4  s  3!  s4  3

6. Determine the inverse Laplace transforms of : (a)

3s 1 2 s −8 2

(b)

7 s − 16 2

        3 s s  s  = 3ℒ −1  = 6ℒ −1  (a) ℒ −1   = 6 cosh 4t   2 − 42 1 1 s   2 2  s −8  ( s − 16 )  2  2 

 1 7 7   4   7  (b) ℒ −1  = 7ℒ −1  = ℒ −1  = sinh 4t    4 4  s 2 − 42   s 2 − 16   ( s 2 − 42 ) 

7. Determine the inverse Laplace transforms of : (a)

15 3s − 27 2

(b)

4 ( s − 1)3

    1 5 5   15   1   3  (a) ℒ −1  = 15ℒ −1  = 5ℒ −1   = ℒ −1  2 2  = sinh 3t   2 2 2 3 3 s −3  s −3   3s − 27   3  s 2 − 27     3  

 4     2!  1 4 −1  2!  −1 −1 (b) ℒ −1  = 4 ℒ = ℒ = 2 ℒ = 2 et t 2    3 2 +1  2 +1  2 +1  2! − − − − s 1 s 1 s 1 s 1 ( ) ( ) ( ) ( )        

8. Determine the inverse Laplace transforms of : (a)

1465

1 ( s + 2) 4

(b)

3 ( s − 3)5 © 2014, John Bird

 1     1 3!  1 −1  3!  1 − 2t 3 1 (a) ℒ −1  = ℒ −1  = ℒ −1  = ℒ  = e t 4 3+1  3+1  3+1  3! 6 6 s + 2 s + 2 s + 2 s 2 + ( ) ( ) ( ) ( )        

   3  1 3 −1  4!  1 −1  4!  1 3t 4 −1 (b) ℒ −1  = 3 ℒ = ℒ  = ℒ  = e t    5 4 +1 4 +1  4 +1  4!  ( s − 3)   ( s − 3)  8  ( s − 3)   ( s − 3)  8

9. Determine the inverse Laplace transforms of : (a)

s +1 s 2 + 2 s + 10

3 s 2 + 6 s + 13

(b)

  s +1  s +1  (a) ℒ −1  = ℒ −1    = e − t cos 3t 2 2 + 2 s + 10 2 s    ( s + 1) + 3     3 3 1 2 3 −1    −1 = 3 ℒ = ℒ (b) ℒ −1       = e −3t sin 2t 2 2 2 2 2 2 2  s + 6 s + 13   ( s + 3) + 2   ( s + 3) + 2 

10. Determine the inverse Laplace transforms of : (a)

2( s − 3) s − 6 s + 13 2

(b)

7 s − 8s + 12 2

   2 ( s − 3)  s −3 = 2ℒ −1  (a) ℒ −1   = 2 e3t cos 2t  2 2 − 6 s + 13 2 s − + s 3 2 ( )       7   7 7 1 2   −1 (b) ℒ −1  = 7ℒ −1  = ℒ     = e 4 t sinh 2t 2 2 2 2 2 2  s 2 − 8s + 12  s 4 2 − − − − s 4 2 ) )  (   ( 

11. Determine the inverse Laplace transforms of : (a)

2s + 5 s 2 + 4s − 5

(b)

3s + 2 s 2 − 8s + 25

 2 ( s + 2 )  1  2s + 5  (a) ℒ −1  = ℒ −1  +   2 2  s 2 + 4s − 5   ( s + 2 ) − 32 ( s + 2 ) − 32    1   s+2 3 1 −1 = 2ℒ −1  + ℒ   = 2 e −2t cosh 3t + e −2t sinh 3t  2 2 3 3  ( s + 2 ) − 32   ( s + 2 ) − 32 

 3 ( s − 4 ) + 14   3s + 2   3s + 2  (b) ℒ −1  = ℒ −1  = ℒ −1     2 2 2 2  s 2 − 8s + 25   ( s − 4 ) + 3   ( s − 4 ) + 3 

1466

© 2014, John Bird

    14 3 s−4 14 = 3ℒ −1  ℒ −1   = 3e 4t cos 3t + e 4t sin 3t + 2 2 2 2 3 3  ( s − 4 ) + 3   ( s − 4 ) + 3 

1467

© 2014, John Bird

EXERCISE 355 Page 1036

1. Use partial fractions to find the inverse Laplace transforms of:

11 − 3s = s + 2s − 3 2

Hence,

2 5 − ( s − 1) ( s + 3)

from Problem 1, page 188 of the textbook

 2 5   11 − 3s  ℒ −1  = ℒ −1  −   = 2 e − t − 5e − 3t 2 + 2s − 3 s s 1 s 3 + + ( ) ( )    

2. Use partial fractions to find the inverse Laplace transforms of:

2 s 2 − 9 s − 35 4 3 1 = − + ( s + 1)( s − 2 )( s + 3) ( s + 1) ( s − 2 ) ( s + 3)

Hence,

 2 s 2 − 9 s − 35   4 3 1  ℒ −1  − +  = ℒ −1   = 4 e − t − 3e 2t + e − 3t s 1 s 2 s 3 s 1 s 2 s 3 + − + + − + ( )( )( ) ( ) ( ) ( )    

5s 2 − 2 s − 19 2 3 4 = + − ( s + 3)( s − 1) 2 ( s + 3) ( s − 1) ( s − 1)2

Note:

2 s 2 − 9 s − 35 ( s + 1)( s − 2)( s + 3)

from Problem 2, page 188 of the textbook

3. Use partial fractions to find the inverse Laplace transforms of:

Hence,

11 − 3s s + 2s − 3 2

5s 2 − 2 s − 19 ( s + 3)( s − 1) 2

from Problem 6, page 190 of the textbook

 5s 2 − 2 s − 19  3 4   2 −1 ℒ −1  = ℒ = 2 e − 3t + 3et − 4 et t + −   2 2 + − s s 3 1 ( ) ( ) − s 1 + − s 3 s 1 ( )  )( )    (  4   1  −1 ℒ −1  = 4 ℒ = 4 et t   2 1+1   ( s − 1)   ( s − 1) 

4. Use partial fractions to find the inverse Laplace transforms of:

3s 2 + 16 s + 15

( s + 3)

3

3 2 6 − − 2 ( s + 3 ) ( s + 3 ) ( s + 3 )3

=

3s 2 + 16 s + 15 ( s + 3)3

from Problem 7, page 191 of the textbook 1468

© 2014, John Bird

Hence,

 3  3s 2 + 16 s + 15  2 6  ℒ −1  − −  = ℒ −1  2 3 3  ( s + 3) ( s + 3) ( s + 3)   ( s + 3) 

 1   1   1  −1 = 3ℒ −1  – 6 ℒ    – 2ℒ −1  3 2  ( s + 3)   ( s + 3)   ( s + 3)    1 6 −1  2!   1  −1 = 3ℒ −1  – 2 ℒ – ℒ    2 +1  1+1   ( s + 3)   ( s + 3)  2!  ( s + 3) 

= 3e −3t − 2 e −3t t − 3e −3t t 2

or

e −3t (3 − 2t − 3t 2 )

5. Use partial fractions to find the inverse Laplace transforms of:

7 s 2 + 5s + 13 = ( s 2 + 2)( s + 1) and

2s + 3 5 + 2 ( s + 2 ) ( s + 1)

2s + 3 5 + = ( s 2 + 2 ) ( s + 1)

Hence,

from Problem 8, page 192 of the textbook

2s 3 5 + + ( s 2 + 2 ) ( s 2 + 2 ) ( s + 1)

 2 s  7 s 2 + 5s + 13  3 5  = ℒ −1  ℒ −1  + +   2 2 2  ( s + 2 ) ( s + 2 ) s + 1   ( s + 2 )( s + 1)   s  = 2ℒ   s2 + 2  −1

( )

= 2 cos 2 t +

  3 2   − 1 + ℒ  2 2   s2 + 2  

3 + 6s + 4s 2 − 2s3 2 1 3 − 4s = + + s 2 ( s 2 + 3) s s2 s2 + 3

( )

   1  + 5ℒ −1   2  s + 1  

3 sin 2 t + 5e − t 2

6. Use partial fractions to find the inverse Laplace transforms of:

Hence,

7 s 2 + 5s + 13 ( s 2 + 2)( s + 1)

3 + 6s + 4s 2 − 2s3 s 2 ( s 2 + 3)

from Problem 9, page 192 of the textbook

 3 + 6 s + 4 s 2 − 2 s 3   2 1 3 − 4s  ℒ −1    = ℒ −1  + 2 + 2 2 2 s +3 s ( s + 3) s s     3 − 4s 1  1 − 1 − 1 = 2ℒ   + ℒ   + ℒ  2 s s   s2 + 3  −1

( )

1469

  2   © 2014, John Bird

   3 4s    1  1 − 1 − 1 − 1 = 2ℒ   + ℒ   + ℒ  –ℒ  2 2 s  s  s2 + 3   s2 + 3    −1

( )

( )

  2  

  3 1 1 3       ℒ −1  – = 2ℒ −1   + ℒ −1   + 2 2 3 s  s 2 s + 3   

( )

  s   4ℒ −1  2  s2 + 3   

( )

= 2 + t + 3 sin 3 t − 4 cos 3 t

7. Use partial fractions to find the inverse Laplace transforms of:

Let

26 − s 2 s ( s 2 + 4 s + 13)

A ( s 2 + 4 s + 13) + ( Bs + C ) s A Bs + C 26 − s 2 ≡ + = s ( s 2 + 4 s + 13) s s 2 + 4 s + 13 s ( s 2 + 4 s + 13) 2 26 − s = A ( s 2 + 4 s + 13) + Bs 2 + Cs

Hence, When s = 0:

26 = 13A + 0 + 0

Equating s 2 coefficients:

–1 = A + B

Equating s coefficients:

0 = 4A + C

Thus,

Hence,

i.e. A = 2 i.e. B = –3 i.e. C = –8

26 − s 2 2 −3s − 8 ≡ + s ( s 2 + 4 s + 13) s s 2 + 4 s + 13   26 − s 2 2  3s + 8  ℒ −1  = ℒ −1   – ℒ −1     s 2 + 4 s + 13  s  s ( s 2 + 4 s + 13)   3s + 8  1  = 2ℒ −1   – ℒ −1   2 2 s  ( s + 2 ) + 3     3 ( s + 2 )  2 1  −1 = 2ℒ −1   – ℒ −1  – ℒ    2 2 2 2 s  ( s + 2 ) + 3   ( s + 2 ) + 3   ( s + 2 )  2   3 1  −1 = 2ℒ −1   – 3ℒ −1  – ℒ    2 2 s  ( s + 2 ) + 32  3  ( s + 2 ) + 32 

1470

© 2014, John Bird

2 = 2 − 3e −2t cos 3t − e −2t sin 3t 3

1471

© 2014, John Bird

EXERCISE 356 Page 1038

1. Determine for the transfer function: R(s) =

50 ( s + 4) s ( s + 2)( s 2 − 8s + 25)

(a) the zero and (b) the poles. Show the poles and zeros on a pole–zero diagram.

(a) For the numerator to be zero, (s + 4) = 0 hence, s = –4 is a zero of R(s) (b) For the denominator to be zero, s = 0 or s = –2 or s 2 − 8s + 25 = 0

i.e.

s=

− −8±

( −8)

2

− 4(1)(25)

2(1)

=

8 ± −36 −8 ± j 6 = = 4 ± j3 2 2

Hence, poles occur at s = 0, s = –2, s = 4 + j3 and 4 – j3 A pole–zero diagram is shown below

2. Determine the poles and zeros for the function: F(s) =

( s − 1)( s + 2) and plot them on a ( s + 3)( s 2 − 2 s + 5)

pole–zero map.

For the numerator to be zero, (s – 1) = 0 hence, s = +1 is a zero of F(s) and

(s + 2) = 0 hence, s = –2 is a zero of F(s)

For the denominator to be zero, s = –3 or s 2 − 2 s + 5 = 0

1472

© 2014, John Bird

i.e.

s=

−−2±

( −2 )

2

− 4(1)(5)

2(1)

=

2 ± −16 2 ± j 4 = = 1± j2 2 2

Hence, poles occur at s = –3, s = 1 + j2 and 1 – j2 A pole–zero diagram is shown below

3. For the function G(s) =

s −1 , determine the poles and zeros and show them on a ( s + 2)( s 2 + 2 s + 5)

pole–zero diagram. For the denominator to be zero, s = –2 or s 2 + 2 s + 5 = 0

i.e.

s=

−2 ±

( 2)

2

− 4(1)(5)

2(1)

−2 ± −16 −2 ± j 4 = = =−1 ± j 2 2 2

Hence, poles occur at s = –2, s = –1 + j2 and –1 – j2 For the numerator to be zero, (s – 1) = 0 hence, s = 1 is a zero of G(s) A pole–zero diagram is shown below

1473

© 2014, John Bird

4. Find the poles and zeros for the transfer function: H(s) =

s 2 − 5s − 6 and plot the results in the ss ( s 2 + 4)

plane. For the denominator to be zero, s = 0 or s 2 + 4 = 0 i.e.

s2 = − 4

and s =

and

−4 = ± j2

Hence, poles occur at s = 0, s = + j2 and –j2 For the numerator to be zero, s 2 − 5s − 6 = 0 i.e.

( s − 6)( s + 1) = 0 hence, s = 6 is a zero of H(s)

and

s = –1 is a zero of H(s)

A pole–zero diagram is shown below

1474

© 2014, John Bird